Nipomo Mesa Management Area

3rd Annual Report
Calendar Year 2010

Prepared by
NMMA Technical Group

Submitted June 2011
This page intentionally left blank.
Table of Contents

Table of Contents ... i
List of Figures .. iii
List of Tables .. iii
Acronyms ... v
Abbreviations .. vi
Executive Summary .. ES-1
ES-1 Background .. ES-1
ES-2 Findings .. ES-2
ES-3 Recommendations .. ES-3
 ES-3.1 Funding Recommendations .. ES-3
 ES-3.2 Achievements from Previous NMMA Annual Report Recommendations ES-4
 ES-3.3 Technical Recommendations .. ES-4
1. Introduction .. 1
 1.1. Background .. 1
 1.1.1. History of the Litigation Process ... 1
 1.1.2. Description of the Nipomo Mesa Management Area Technical Group 2
 1.1.3. Coordination with Northern Cities and Santa Maria Management Areas 3
 1.1.4. Development of Monitoring Program ... 3
 1.1.5. Development of Water Shortage Conditions and Response Plan 4
 1.1.6. Well Management Plan ... 4
 1.1.7. Supplemental Water ... 4
 2. Basin Description .. 7
 2.1. Physical Setting ... 8
 2.1.1. Area ... 8
 2.1.2. General Land Use .. 8
 2.2. Climate ... 8
 2.3. Hydrogeology ... 9
 2.3.1. Geology ... 9
 2.3.2. Groundwater Flow Regime ... 9
 3. Data Collection ... 13
 3.1. Data Collected .. 13
 3.1.1. Groundwater Elevations in Wells ... 13
 3.1.2. Water Quality in Wells .. 13
 3.1.3. Rainfall .. 14
 3.1.4. Rainfall Variability .. 15
 3.1.5. Streamflow ... 15
 3.1.6. Surface Water Usage .. 15
 3.1.7. Surface Water Quality .. 16
 3.1.8. Land Use .. 16
 3.1.9. Groundwater Production (Reported and Estimated) 17
 3.1.10. Wastewater Discharge and Reuse .. 20
 3.1.11. Wastewater Discharge and Reuse .. 20
 3.2. Database Management ... 21
 3.3. Data and Estimation Uncertainties ... 21
 4. Water Supply & Demand ... 29
 4.1. Water Supply .. 29
 4.1.1. Groundwater Production ... 30
 4.1.2. Recycled Water .. 30
 4.1.3. Supplemental Water .. 30
4.1.4. Surface Water Diversions ... 30
4.2. Water Demand .. 30
4.2.1. Historical Demand ... 30
4.2.2. Current Demand .. 31
4.2.3. Potential Future Production (Demand) ... 31
5. Hydrologic Inventory ... 32
5.1. Rainfall and Deep Percolation .. 32
5.2. Streamflow and Surface Runoff ... 33
5.3. Groundwater Production ... 33
5.4. Groundwater Subsurface Flow ... 33
5.5. Supplemental Water .. 34
5.6. Wastewater ... 34
5.7. Return Flow of Applied Water and Consumptive Use 34
5.8. Change in Groundwater Storage .. 35
6. Groundwater Conditions .. 37
6.1. Groundwater Elevations ... 37
6.1.1. Results from Inland Key Wells .. 38
6.1.2. Results from Coastal Monitoring Wells ... 38
6.1.3. Groundwater Contours and Pumping Depressions 38
6.1.4. Groundwater Gradients ... 39
6.2. Groundwater Quality .. 39
6.2.1. Results of Coastal Water Quality Monitoring 40
6.2.2. Results of Inland Water Quality Monitoring 40
7. Analyses of Water Conditions .. 49
7.1. Analyses of Current Conditions ... 49
7.1.1. Groundwater Conditions .. 49
7.1.2. Hydrologic Inventory .. 50
7.2. Water Shortage Conditions ... 50
7.2.1. Coastal Criteria .. 51
7.3. Long-term Trends ... 53
7.3.1. Climatological Trends ... 53
7.3.2. Land Use Trends ... 54
7.3.3. Water Use and Trends in Basin Inflow and Outflow 54
8. Other Considerations .. 59
8.1. Institutional or Regulatory Challenges to Water Supply 59
9. Recommendations .. 59
9.1. Funding of Capital and Operating Expenditure Program 59
9.2. Achievements from previous NMMA Annual Report Recommendations .. 60
9.3. Technical Recommendations ... 60
References ... 63
Appendices .. 66

Appendix A: Monitoring Program
Appendix B: Water Shortage Conditions and Response Plan
Appendix C: Well Management Plan
Appendix D: Data Acquisition Protocols for Groundwater Level Measurements for the NMMA
Appendix E: Additional Data
List of Figures

Figure 1-1. Santa Maria Valley Groundwater Basin and Management Areas .. 5
Figure 1-2. NMMA Water Purveyor Boundaries ... 6
Figure 1-3. NMMA Monitoring Program Wells ... 7
Figure 2-1. NMMA Geology and Faults .. 12
Figure 2-2. Schematic of Confining Layer and Confined Aquifer (Bachman et al, 2005) 12
Figure 3-1. 2010 Spring Groundwater Elevations .. 22
Figure 3-2. 2010 Fall Groundwater Elevations ... 23
Figure 3-3. Locations of Water Quality Data .. 24
Figure 3-4. Rainfall Station Location and Water Year 2010 Annual Rainfall .. 25
Figure 3-5. Cumulative Departure from the Mean for the following rain gauges 26
Figure 3-6. Location of Stream Flow Sensors ... 27
Figure 3-7. 2010 Groundwater Use ... 28
Figure 3-8. Wastewater Treatment Facilities ... 29
Figure 4-1. Historical NMMA Groundwater Production .. 32
Figure 5-1. Schematic of the Hydrologic Inventory ... 36
Figure 5-2. NMMA Watershed Boundaries .. 37
Figure 6-1. Key Wells Hydrographs, South-East Portion of NMMA ... 42
Figure 6-2. Key Wells Hydrographs, North-West Portion of NMMA .. 43
Figure 6-3. Hydrograph for Coastal Monitoring Well Clusters 11N/36W-12C ... 44
Figure 6-4. Hydrograph for Coastal Monitoring Well Clusters 12N/36W-36L ... 45
Figure 6-5. 2010 Spring Groundwater Contours ... 46
Figure 6-6. 2010 Fall Groundwater Contours .. 47
Figure 6-7. Chloride in Coastal Well 11N/36W-12C .. 48
Figure 6-8. Chloride in Coastal Well 12N/36W-36L .. 49
Figure 7-1. Coastal monitoring well cluster 36L ... 55
Figure 7-2. Key Wells Index .. 56
Figure 7-3. Rainfall: Cumulative Departure from the Mean – Rainfall Gauge Mehlschau (38) 56
Figure 7-4. NMMA Land Use – 1959 to 2007 ... 57
Figure 7-5. Historical Land Use in the NMMA .. 58

List of Tables

Table 1-1. NMMA Technical Group ... 3
Table 2-1. Climate in the Nipomo Mesa Area ... 9
Table 3-1. Rainfall Gauges and 2010 Rainfall Totals ... 15
Table 3-2. 2010 Land Use Summary ... 17
Table 3-3. Calendar Year 2010 Reported Groundwater Production ... 18
Table 3-4. 2010 Estimated Groundwater Production for Agricultural ... 19
Table 3-5. Estimated Groundwater Production for Rural Landowners ... 19
Table 3-6. 2010 Measured and Estimated Groundwater Production (AF/yr) .. 20
Table 3-7. 2010 Wastewater Volumes 20
Table 6-1. State Water Resources Control Board GeoTracker Active Sites 41
Table 7-1. Criteria for Potentially Severe Water Shortage Conditions 51
Table 7-2. NMMA Land Use – 1959 to 2007 (Values in acres) 54
Table 9-1. NMMA 5-Year Cost Analysis 60
Acronyms

AF - acre-feet
AF/yr - acre-feet per year
ALERT - Automated Local Evaluation in Real Time
C.E.G. - Certified Engineering Geologist
C.H.G. - Certified Hydrogeologist
CCAMP - Central Coast Ambient Monitoring Program
CDF - California Department of Forestry (now Cal Fire)
CIMIS - California Irrigation Management Information System
CPUC - California Public Utilities Commission
CU - consumptive use
D - day
DPH - California Department of Public Health
DWR - California Department of Water Resources
ES - Executive Summary
Ft - feet
ft² - square feet
ft msl - feet above mean sea level
Gpd - gallons per day
GSWC - Golden State Water Company
K - hydraulic conductivity
MCL - Maximum Contaminant Level
mg/L - milligrams per Liter
Msl - mean sea level
NCSD - Nipomo Community Services District
NMMA - Nipomo Mesa Management Area
TG - Nipomo Mesa Management Area Technical Group
P.E. - Professional Engineer
P.G. - Professional Geologist
RF - return flow
RP - reference point
RWC - Rural Water Company
SCWC - Southern California Water Company (now Golden State Water Company)
SLO - San Luis Obispo County
SLO DPW - San Luis Obispo County Department of Public Works
SWP - State Water Project
TDS - Total Dissolved Solids
U.S. - United States
WWTF - wastewater treatment facility
WY - Water Year
Yr - year
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blacklake WWTF</td>
<td>Blacklake Reclamation Facility</td>
</tr>
<tr>
<td>Cypress Ridge WWTF</td>
<td>Rural Water Company’s Cypress Ridge Wastewater Facility</td>
</tr>
<tr>
<td>Phase III</td>
<td>Santa Maria Groundwater Litigation Phase III</td>
</tr>
<tr>
<td>Program</td>
<td>Nipomo Mesa Management Area Monitoring Program</td>
</tr>
<tr>
<td>Santa Maria Groundwater Litigation</td>
<td>Santa Maria Valley Water Conservation District vs. City of Santa Maria, et al. Case No. 770214</td>
</tr>
<tr>
<td>Southland WWTF</td>
<td>Southland Wastewater Treatment Facility</td>
</tr>
<tr>
<td>Stipulation</td>
<td>Stipulated Judgment dated June 30, 2005</td>
</tr>
<tr>
<td>Temp</td>
<td>Temperature</td>
</tr>
<tr>
<td>Woodlands</td>
<td>Woodlands Mutual Water Company</td>
</tr>
<tr>
<td>Woodlands WWTF</td>
<td>Woodlands Mutual Water Company Wastewater Reclamation Facility</td>
</tr>
</tbody>
</table>
Executive Summary

This 3rd Annual Report, covering calendar year 2010 for the Nipomo Mesa Management Area (NMMA), is prepared in accordance with the Stipulation and Judgment for the Santa Maria Groundwater Litigation (Lead Case No. 1-97-CV-770214). The annual report provides an assessment of hydrologic conditions for the NMMA based on an analysis of the data accruing each calendar year. Each annual report is submitted to the court annually in accordance with the Stipulation in the year following that which is assessed in the report. This Executive Summary contains three sections: ES-1 Background; ES-2 Findings; and ES-3 Recommendations.

ES-1 Background

The NMMA Technical Group (TG) is one of three management areas committees established by the Court and charged with developing the technical bases for sustainable management of the surface and groundwater supplies available to each of the management areas. The TG is the committee for the NMMA. The Northern Cities Management Area lies to the north of the NMMA and the Santa Maria Valley Management Area lies to the south. The goal of each management area is to promote monitoring and management practices so that present and future water demands are satisfied without causing long-term damage to the underlying groundwater resource.

The TG, a committee formed to administer the relevant provisions of the Stipulation regarding the NMMA, prepared this 3rd Annual Report Calendar Year 2010. ConocoPhillips, Golden State Water Company, Nipomo Community Services District, and Woodlands Mutual Water Company are responsible for appointing the members of the committee, and along with an agricultural overlying landowner, who is also a Stipulating Party, are responsible for the preparation of this annual report.

The TG collected and compiled data and reports from numerous sources including the NMMA Monitoring Parties, Counties of San Luis Obispo and Santa Barbara, California Department of Water Resources and Department of Public Health, the U. S. Geologic Survey and the Management Area Engineers for the Northern Cities and Santa Maria Valley Management Areas. The TG developed an electronic database to aid in the evaluation of the long-term sustainability of the NMMA portion of the Santa Maria Valley Groundwater Basin. The TG reviewed these data and reports and concluded that the development of additional data and evaluations will be on-going to aid the understanding of the hydrogeologic conditions of the NMMA and to make comprehensive recommendations for the long-term management of the NMMA.

The TG evaluated the available compiled data to reach the findings presented in the following section of this Executive Summary. The TG recognizes that the data used in the evaluations are not equally reliable but represent what is currently available. In some cases, additional analysis will be required for an adequate characterization of the physical setting within NMMA to develop an appropriately detailed model of the stratigraphy, defining the location and thickness of production aquifers and confining layers. Refinements in the understanding of the physical setting will improve upon estimates of groundwater in storage available for pumping to meet water demands. Such work is an important goal for the TG and mirrors the TG's desire to characterize groundwater storage in the NMMA. The TG has developed specific recommendations to address these issues for the next annual report.
ES-2 Findings

Presented in this section of the Executive Summary are brief descriptions of the findings by the TG for calendar year 2010. Presented in the body of this report are the details and bases for these findings.

1. The TG recommends that the Nipomo Supplemental Water Project be implemented as soon as possible (see Section 9.3 Technical Recommendations).

2. Potentially Severe Water Shortage Conditions continue to exist in the NMMA as indicated by the Key Wells Index (see Section 7.2 Water Shortage Conditions). Coastal water quality and water levels continue to be better than thresholds for Water Shortage Conditions (i.e., chloride concentrations are less than threshold concentrations and groundwater elevations are higher than threshold elevations). Potentially Severe Water Shortage Conditions trigger a voluntary response plan as presented in the Water Shortage Conditions and Response Plan (see Section 7.2.1 Status of Water Shortage Conditions).

3. Spring groundwater elevations underlying the NMMA, indicated by the Key Wells Index of eight (8) wells, increased slightly from 2009 levels after a three consecutive year decline (see Section 7.1.1 Groundwater Conditions). However, several of the Key Wells have seen declining groundwater elevations since about 2000 (see Section 6.1.1 Results from Inland Key Wells).

4. There are a number of direct measurements that indicate that demand exceeds the ability of the supply to replace the water pumped from the aquifers (see Section 7.1.2 Hydrologic Inventory).

5. The final environmental documentation for the Nipomo Supplemental Water Project is completed and NCSD has informed the TG that construction could begin in early 2012 (see Section 1.1.7 Supplemental Water).

6. Total rainfall for Water Year 2010 (October 1, 2009 through September 30, 2010) is approximately 130 percent of the long-term average (see Section 3.1.3 Rainfall).

7. The period of analysis (1975-2010) used by the TG is roughly 11 percent “wetter” on average than the long-term record (1920-2010) indicating there is a slight bias toward overstating the amount of local water supply resulting from percolation of rainfall (see Section 7.3.1 Climatological Trends).

8. The total estimated 2010 calendar year groundwater production is 10,950 acre-feet (AF). The breakdown by user and type of use is shown in the following table (see Section 3.1.9 Groundwater Production (Reported and Estimated)).

<table>
<thead>
<tr>
<th>Type</th>
<th>Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture</td>
<td>2,800 AF</td>
</tr>
<tr>
<td>Urban/Industrial</td>
<td>8,150 AF</td>
</tr>
<tr>
<td>Total Production</td>
<td>10,950 AF</td>
</tr>
</tbody>
</table>

9. The total Waste Water Treatment Facility effluent discharged in the NMMA was 640 AF for Calendar Year 2010 (see Section 3.1.10 Wastewater Discharge and Reuse).

10. Contour maps prepared using Spring and Fall 2010 groundwater elevations suggests subsurface flow is generally from east to west (toward the ocean). They also show a nearly flat gradient in a
localized area near the coast (see Section 6.1.3 Groundwater Contours and Pumping Depressions).

11. The acreage for land use classification of Urban is 10,246 acres; of Agriculture is 2,587 acres; and, of Native is 8,314 acres (see Section 3.1.8 Land Use).

12. There is no evidence of any water quality issues including seawater intrusion that significantly restrict current use of groundwater to meet the current water demands, but localized areas of the NMMA have reported nitrate concentrations exceeding the drinking water MCL in 2010 (see Section 6.2.2 Results of Inland Water Quality Monitoring).

13. There is a lack of understanding of the contribution of Los Berros and Nipomo Creeks to the NMMA water supplies (see Section 3.1.5 Streamflow).

14. There is a lack of understanding about confined and unconfined aquifer conditions in the NMMA, except near the coast and locally adjacent areas where the Deep Aquifer is known to be confined (see Section 2.3.2 Groundwater Flow Regime).

15. There is a lack of understanding of the flow path of rainfall, applied water, and treated wastewater to specific aquifers underlying the NMMA (see Section 3.1.10 Wastewater Discharge and Reuse).

ES-3 Recommendations

A list of recommendations were developed and published in each of the previous NMMA Annual Reports. The TG will address past and newly developed recommendations along with the implementation schedule based on future budgets, feasibility, and priority. The recommendations are subdivided into three categories: (1) Draft capital and operation expenditure plan, (2) Achievements from earlier NMMA annual report recommendations accomplished in 2010; and (3) Technical Recommendations – to address the needs of the TG for data collection and compilation.

ES-3.1 Funding Recommendations

The TG acknowledges that the work items and budget presented below represent a consensus view that additional technical work is necessary beyond that covered under the current annual budget limit. Completing this broader scope of work will require a formal adjustment to the NMMA TG budget limit.
NMMA 5-Year Cost Analysis

<table>
<thead>
<tr>
<th>Task Description</th>
<th>Total Cost</th>
<th>Targeted Completion Year</th>
<th>Projected 5-year Cash Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>2011</td>
</tr>
<tr>
<td>Yearly Tasks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual report preparation</td>
<td>$50,000</td>
<td>$50,000</td>
<td>$50,000</td>
</tr>
<tr>
<td>Grant funding efforts</td>
<td>$10,000</td>
<td>$10,000</td>
<td>$10,000</td>
</tr>
<tr>
<td>Confining layer definition</td>
<td>$10,000</td>
<td>$10,000</td>
<td>$10,000</td>
</tr>
<tr>
<td>Well head surveying</td>
<td>$3,000</td>
<td>$3,000</td>
<td>$3,000</td>
</tr>
<tr>
<td>Analytical testing</td>
<td>$5,000</td>
<td>$5,000</td>
<td>$5,000</td>
</tr>
<tr>
<td>Long Term Studies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Groundwater model (NMMA share)</td>
<td>$250,000</td>
<td>2015</td>
<td>$33,300</td>
</tr>
<tr>
<td>Capital Projects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oso Flaco monitoring well</td>
<td>$130,000</td>
<td>2013</td>
<td>$43,300</td>
</tr>
<tr>
<td>Automatic monitoring equipment</td>
<td>$25,000</td>
<td>2015</td>
<td>-</td>
</tr>
<tr>
<td>Total Projected Annual Cost</td>
<td>$154,600</td>
<td>$154,600</td>
<td>$154,600</td>
</tr>
</tbody>
</table>

ES-3.2 Achievements from Previous NMMA Annual Report Recommendations

The TG worked diligently to address several of the recommendations outlined in the previous Annual Reports. Major achievements and progress were accomplished during 2010 on the following:

- Evaluation of an Oso Flaco monitoring well cluster;
- Evaluation of hydrological conditions – refinement of areal extent of the confined aquifer was undertaken. Development of refined cross-sections through key areas of the basin.
- Technical work to establishing methodology and quantifying volume of water percolating beyond the root zone.
- Reviewed and identified existing well locations and recommended additional monitoring to be incorporated into the County water level monitoring program.
- Established sub-committee and met with representatives from NCMA and SMVMA to discuss groundwater modeling possibilities, groundwater monitoring activities, methodology to estimate percolation, and sea water intrusion findings.

ES-3.3 Technical Recommendations

The following technical recommendations are not organized in their order of priority because the monitoring parties, considering their own particular funding constraints and authorities, will determine the implementation strategies and priorities. However, the TG has suggested a priority for some of the technical recommendations.

- **Supplemental Water Supply** – An additional water supply that would allow reduced pumping within the NMMA is likely to be the most effective method of reducing the stress on the aquifer.
and allow groundwater elevations to recover. The Nipomo Supplemental Water Project (see Section 1.1.7-Supplemental Water) is likely to be the fastest method of obtaining alternative water supplies. Given the Potentially Severe Water Shortage Conditions within the NMMA and the other risk factors discussed in this Report, the TG recommends that this project be implemented as soon as possible.

- **Consumptive Water Demand** – Technical memo establishing methodology and quantifying consumptive water demand within the NMMA.

- **Well Management Plan** – It is recommended that for calendar year 2011, purveyors compile and present to the TG a Well Management Plan status update.

- **Changes to Monitoring Points or Methods** – The coastal monitoring wells are of great importance in the Monitoring Program. The inability to locate the monitoring well cluster under the sand dunes proximally north of Oso Flaco Lake renders the southwestern coastal portion of the NMMA without adequate coastal monitoring. During 2009 and 2010, the NMMA Technical Group reviewed options for replacing this lost groundwater monitoring site. The TG was given written support of the concept from the State Parks Department to allow replacement of the well, and the TG has also had discussions with San Luis Obispo County, which may be able to provide some financial assistance for the project. The NMMA Technical Group has incorporated replacement of this monitoring well in its long-term capital project planning and will investigate possible State or Federal grants for financial assistance with the construction of this multi-completion monitoring well.

- **County of San Luis Obispo Monitoring Locations** – Review proposed County of San Luis Obispo monitoring well and stream gauge locations.

- **Installation of Groundwater Monitoring Equipment** – When a groundwater level is measured in a well, both the length of time since the measured well is shut off and the effect of nearby pumping wells modify the static water level in the well being measured. For the Key Wells, the installation of transducers and data loggers will largely solve this problem. Installation of transducers is also recommended for purveyors’ wells that pump much of the time.

- **Well Reference Point Elevations** – It is recommended that all the wells used for monitoring have an accurate RP established over time. This could be accomplished by surveying a few wells every year or by working with the other Management Areas and the two counties in the Santa Maria Basin to obtain LIDAR data for the region; the accuracy of the LIDAR method allows one-foot contours to be constructed and/or spot elevations to be determined to similar accuracy.

- **Boundary Flow Estimates** - Develop a methodology to potentially provide better estimates of subsurface flow across between the NMMA and NCMA. Continue to monitor the low groundwater elevation saddle between NCMA and the ocean (See Section 6.1.4 Groundwater Gradients).

- **Groundwater Production** – Estimates of total groundwater production are based on a combination of measurements provided freely from some of the parties, and estimates based on land use. The TG recommends developing a method to collect groundwater production data from all stipulating parties. The TG recommends updating the land use classification on an interval commensurate with growth and as is practical with the intention that the interval is more frequent than DWR’s 10-year cycle of land use classification.
• **Increased Collaboration with Agricultural Producers** – To better estimate agricultural groundwater production where data is incomplete, it is recommended that the TG work with a subset of farmers to measure groundwater production. This measured groundwater production can then be used to calibrate models and verify estimates of agricultural groundwater production where data are not available.

• **Hydrogeologic Characteristics of NMMA** - Further defining the continuity of confining conditions within the NMMA remains a topic of investigation by the TG. The locations of unconfined conditions is important – they control to a significant degree both the NMMA groundwater budget as to the quantity of recharge from overlying sources and any calculation of changes in groundwater storage. Further review of well screen intervals, lithology, groundwater level, and other relevant information to segregate wells into the different aquifer groups (e.g. shallow versus deep aquifers) for preparation of groundwater elevation contour maps for different aquifers.

• **Modifications of Water Shortage Conditions Criteria** - The Water Shortage Conditions and Response Plan was finalized in 2008. The TG will review the plan on a regular basis.

• **Groundwater Modeling** - The TG continues to recommend the advancement of a groundwater model as presented in the NMMA 6-yr Cost Analysis. This may include a collaboration with the NCMA, the SMVMA or both.
1. **Introduction**

The rights to extract water from the Santa Maria Valley Groundwater Basin have been in litigation since the late 1990s. By stipulation and Court action three separate management areas were established, the Northern Cities Management Area, the Nipomo Mesa Management Area (NMMA) and the Santa Maria Valley Management Area. Each management area was directed to form a group of technical experts (TG) to continue to study and evaluate the characteristics and conditions of each management area and present their findings to the Court in the form of an annual report.

This 3rd Annual Report Calendar Year 2010 is a joint effort of the TG. The requirement contained in the Judgment for the production of an Annual Report is as follows:

“Within one hundred and twenty days after each Year, the Management Area Engineers will file an Annual Report with the Court. The Annual Report will summarize the results of the Monitoring Program, changes in groundwater supplies, and any threats to Groundwater supplies. The Annual Report shall also include a tabulation of Management Area water use, including Imported Water availability and use, Return Flow entitlement and use, other Developed Water availability and use, and Groundwater use. Any Stipulating Party may object to the Monitoring Program, the reported results, or the Annual Report by motion.”

The report is organized into ten sections that discusses the general background of the litigation and some of the requirements imposed by the Court, a description of the Basin, Data Collection, Water Supply and Demand, Hydrologic Inventory, Groundwater Conditions, Analysis of Groundwater Conditions; Other Considerations; Recommendations; and References.

1.1. **Background**

Presented in this subsection is the history of the litigation process and general discussions of activities that have been undertaken to date or are underway to manage the water resources of the NMMA.

1.1.1. **History of the Litigation Process**

The Santa Maria Valley Groundwater Basin has been the subject of ongoing litigation since July 1997. Collectively called the Santa Maria Groundwater Litigation (Santa Maria Valley Water Conservation District vs. City of Santa Maria, et al. Case No. 770214), over 1,000 parties were involved with competing claims to pump groundwater from within the boundary of the Santa Maria Valley Groundwater Basin (Figure 1-1).

The Santa Maria Valley Water Conservation District was originally concerned that banking of State Water Project (SWP) water in the groundwater basin by the City of Santa Maria would give the City priority rights to the groundwater. The lawsuit was broadened to address groundwater management of the entire Santa Maria Valley Groundwater Basin.
On June 30, 2005, the Court entered a Stipulated Judgment (“Stipulation”) in the case. The Stipulation divides the Santa Maria Valley Groundwater Basin into three separate management sub-areas (the Northern Cities Management Area, the Nipomo Mesa Management Area (NMMA), and the Santa Maria Valley Management Area). The Stipulation contains specific provisions with regard to rights to use groundwater, development of groundwater monitoring programs, and development of plans and programs to respond to Potentially Severe and Severe Water Shortage Conditions.

The TG was formed pursuant to a requirement contained in the Stipulation. Sections IV D (All Management Areas) and Section VI (C) (Nipomo Mesa Management Area) contained in the Stipulation were independently adopted by the Court in the Judgment After Trial (herein “Judgment”). The Judgment is dated January 25, 2008, and was entered and served on all parties on February 7, 2008.

It is noted that pursuant to paragraph 5 of the Judgment, the TG retains the right to seek a Court Order requiring non-stipulating parties to monitor their well production, maintain records thereof, and make the data available to the Court or the Court’s designee. The compilation and evaluation of existing data, and the aggregation of additional data, are ongoing processes. Given its limited budget and resources, the TG has focused its efforts on the evaluation of readily accessible data. The TG does intend to slowly integrate into its assessment new data that may be collected from stipulating parties and other sources that were not previously compiled as part of the existing database.

1.1.2. **Description of the Nipomo Mesa Management Area Technical Group**

The TG is composed of representatives from the Nipomo Community Services District (NCSD), Golden State Water Company (GSWC) (formerly named Southern California Water Company), ConocoPhillips, Woodlands Mutual Water Company (Woodlands), and an agricultural user that is also a stipulating party. Rural Water Company (RWC) is responsible for funding a portion of the TG’s efforts, but does not appoint a representative to the TG. The TG is responsible for conducting and funding the Monitoring Program. In-lieu contributions through engineering services may be provided, subject to agreement by those parties. The budget of the TG shall not exceed $75,000 per year without prior approval of the Court. The TG is responsible for preparing the Monitoring Program, conducting the Monitoring Program, and preparing the annual reports. The TG attempts to develop consensus on all material issues. If the TG is unable to reach a consensus, the matter may be taken to the court for resolution.

The TG may hire individuals or consulting firms to assist in the preparation of the Monitoring Program and Annual Reports (the Judgment describes these individuals or consulting firms as the “Management Area Engineer”). The representatives to the TG as a group function as the Management Area Engineer (Table 1-1). The TG Monitoring Parties have the sole discretion to select, retain, and replace the Management Area Engineer.
Table 1-1. NMMA Technical Group

<table>
<thead>
<tr>
<th>Monitoring Parties</th>
<th>Management Area Engineers</th>
</tr>
</thead>
<tbody>
<tr>
<td>ConocoPhillips</td>
<td>Steve Bachman, Ph.D., P.G.</td>
</tr>
<tr>
<td>ConocoPhillips</td>
<td>Norm Brown, Ph.D., P.G.</td>
</tr>
<tr>
<td>Woodlands</td>
<td>Tim Cleath, P.G., C.H.G., C.E.G.</td>
</tr>
<tr>
<td>Agricultural Representative</td>
<td>Jacqueline Fredericks</td>
</tr>
<tr>
<td>Woodlands</td>
<td>Rob Miller, P.E.</td>
</tr>
<tr>
<td>Golden State Water Company</td>
<td>Toby Moore, Ph.D., P.G., C.H.G.</td>
</tr>
<tr>
<td>Nipomo Community Services District</td>
<td>Brad Newton, Ph.D., P.G.</td>
</tr>
</tbody>
</table>

A large areal extent within the NMMA receives water service from the major water purveyors (Figure 1-2). The majority of the lands within the NMMA obtain water by means other than from a purveyor. A fraction of these property owners are Stipulating Parties. All of the larger purveyors are also Stipulating Parties. All Stipulating Parties are obligated to make available relevant information regarding groundwater elevations and water quality data necessary to implement the NMMA Monitoring Program.

1.1.3. Coordination with Northern Cities and Santa Maria Management Areas

The NMMA is bounded on the north by the Northern Cities Management Area and on the south by the Santa Maria Valley Management Area (Figure 1-1). All three management areas will monitor subsurface flows by comparing groundwater elevation data on each side of the management area boundary to determine the gradient and direction of flow. Each management area will collect groundwater elevation data within their boundaries and share it with the others to allow estimates of the quantity and direction of flow. The TG has incorporated this concept in its monitoring program submitted to the court and described in the next section. It is understood that the neighboring subareas will do the same.

One of the sources of uncertainty is the subsurface quantity of groundwater that crosses the NMMA boundaries. The TG recognizes that collaborative technical efforts with the Northern Cities and Santa Maria technical groups will be important to the appropriate management of the basin. Examples of current collaborative efforts include:

- Sharing of technical data throughout the year, and during the preparation of annual reports
- Opportunities for review and comment on technical work products
- Sharing of protocols and standards for data collection and analysis
- Consideration of jointly-pursued projects and grant opportunities

As the conditions of the existing basin underlying the NMMA are described in subsequent sections, periodic reference will be made to the Annual Reports produced by the two neighboring technical groups. The aerial extent of groundwater contours has also been limited to the immediate vicinity of the NMMA.

1.1.4. Development of Monitoring Program

In 2008, the TG developed and the Court approved the NMMA Monitoring Program (“Monitoring Program”), attached as Appendix A, to ensure systematic monitoring of important information in the basin. This Monitoring Program includes information such as groundwater elevations,
groundwater quality, and pumping amounts. The Monitoring Program also identifies a number of wells in the NMMA to be monitored (Figure 1-3) and discusses the methods of analysis of the data.

1.1.5. Development of Water Shortage Conditions and Response Plan

Pursuant to the Stipulation, the TG developed a Water Shortage Conditions and Response Plan that is included as part of the Monitoring Program. The Water Shortage Conditions are characterized by two different criteria – those for Potentially Severe Water Shortage Conditions and those for Severe Water Shortage Conditions. The Response Plan for these conditions includes voluntary and mandatory actions by the parties to the Stipulation. The Court approved the Water Shortage Conditions and Response Plan on April 22, 2009, and the document is attached as Appendix B to this report.

1.1.6. Well Management Plan

The Stipulation requires the preparation of a Well Management Plan when Potentially Severe Water Shortage Conditions or Severe Water Shortage Conditions exist prior to the completion of the Nipomo Supplemental Water Project. The Well Management Plan provides for steps to be taken by the NCSD, GSWC, Woodlands and RWC under these water shortage conditions. The Well Management Plan has no applicability to either ConocoPhillips or Overlying Owners as defined in the Stipulation. The Well Management Plan was adopted by the TG in January 2010 and is attached as Appendix C to this report.

There is no interconnection currently between RWC and the other purveyors. Beginning in 2010, NCSD and RWC are discussing the planning and design of establishing an interconnection.

1.1.7. Supplemental Water

The provisions in the Stipulation regarding Supplemental Water provide in relevant part:

“The NCSD agrees to purchase and transmit to the NMMA a minimum of 2,500 acre-feet of Nipomo Supplemental Water each Year. However, the NMMA Technical Group may require NCSD in any given Year to purchase and transmit to the NMMA an amount in excess of 2,500 acre-feet and up to the maximum amount of Nipomo Supplemental Water which the NCSD is entitled to receive under the MOU if the Technical Group concludes that such an amount is necessary to protect or sustain Groundwater supplies in the NMMA. The NMMA Technical Group also may periodically reduce the required amount of Nipomo Supplemental Water used in the NMMA so long as it finds that groundwater supplies in the NMMA are not endangered in any way or to any degree whatsoever by such a reduction.”

“Once the Nipomo Supplemental Water is capable of being delivered, those certain Stipulating Parties listed below shall purchase the following portions of the Nipomo Supplemental Water Yearly:

- NCSD - 66.68%
- Woodlands Mutual Water Company - 16.66%
- SCWC - 8.33%
- RWC - 8.33% ”

The final Judgment entered on January 24, 2008, states: “The court approves the Stipulation, orders the Stipulating Parties only to comply with each and every term thereof, and incorporates the same
herein as though set forth in full.” Thus, the terms of the Stipulation as herein stated must be complied with in accordance with the order of the Court.

The NCSD is developing a project to bring Supplemental Water to the above referenced Stipulating Parties within the NMMA. The project involves the construction of approximately five miles of new water main to transport up to 3,000 AF of new water from the City of Santa Maria. The project is nearing 100% design completion. In the first year of operation, NCSD expects to purchase 2,000 AF of water from the City. The final EIR has been certified by NCSD as lead agency and the City of Santa Maria as a responsible agency. The final Supplemental Water Agreement has been approved by NCSD and the City of Santa Maria. The current cost estimate for construction of the project is $25,300,000. NCSD, Woodlands, GWC and RWC are exploring with the County of San Luis Obispo the formation of an assessment district to finance the capital costs of the project. Assuming the assessment district is approved, GSWC and RWC must also obtain California Public Utilities Commission (CPUC) approval to participate in this project to account for the cost of the supplemental water. NCSD has been notified by DWR that the Supplemental Water Project is recommended to receive a grant up to $2,300,000 in support of the project. Construction on the project may begin as early as 2012.
Figure 1-2. NMMA Water Purveyor Boundaries
2. Basin Description

The Santa Maria Valley Groundwater Basin, covering a surface area of approximately 256 square miles, is bounded on the north by the San Luis and Santa Lucia mountain ranges, on the south by the Casmalia-Solomon Hills, on the east by the San Rafael Mountains, and on the west by the Pacific Ocean. The basin receives water from rainfall directly and runoff from several major watersheds drained by the Cuyama River, Sisquoc River, Arroyo Grande Creek, and Pismo Creek, as well as many minor tributary watersheds. Sediment eroded from these nearby mountains and deposited in the Santa Maria Valley formed beds of unconsolidated alluvium, averaging 1,000 feet in depth, with maximum depths up to 2,800 feet and comprise the principal production aquifers from which water is produced to supply the regional demand. Three management areas were defined to recognize that the development and use of groundwater, State Water Project water, surface water storage, and treatment and distribution facilities have historically been financed and managed separately, yet they are all underlain by or contribute to the supplies within the same groundwater basin.
2.1. **Physical Setting**

The Nipomo Mesa Management Area has physical characteristics which are distinct from the other two management areas. It is largely a mesa area that is north of the Santa Maria River, west of the San Luis Range and south of the Arroyo Grande Creek, with a lower lying coastal environment to the west. The mesa was formed when the Santa Maria River and Arroyo Grande Creek eroded the surrounding area. The current coastal environment developed subsequently, is composed of beach dunes and lakes, and is currently a recreational area with sensitive species habitat. Locally, hummocky topography on the mesa area reflects the older dune deposits. Black Lake Canyon is an erosional feature north-central in the NMMA and where the dune deposit thickness is exposed.

2.1.1. **Area**

The NMMA covers approximately 33 square miles or 21,100 acres, which accounts for approximately 13 percent of the overall Santa Maria Valley Groundwater Basin (164,000 acres). Approximately 13,000 acres on the NMMA, or 60 percent, is developed land requiring water pumped from the underground aquifers to sustain the agricultural and urban development.

2.1.2. **General Land Use**

Land uses include agricultural, urban (residential/commercial), and native or undeveloped areas. There are also three golf courses and one oil-processing facility. The crop types grown in 2010 in the order of largest acreage were strawberries, nursery, avocado, and rotational vegetables (broccoli, lettuce, etc.).

2.2. **Climate**

A Mediterranean-like climate persists throughout the area with cool moist winters and warm dry summers. During the summer months, the warm air inland rises and draws in the relatively cooler marine layer near the coastline keeping summer cooler and providing moisture for plant growth, while in the winter months the relatively warmer ocean temperature keeps the winter warmer. The average annual maximum temperature is 69 degrees Fahrenheit, and the average annual minimum temperature is 46 degrees Fahrenheit. Precipitation normally occurs as rainfall between November and April when cyclonic storms originating in the Pacific Ocean move onto the continent. The long-term (1959 to 2010) average annual rainfall reported at CDF Nipomo Rain Gauge #151.1 is 15.5 inches and is representative of the larger area of the NMMA. Rainfall variability exists across the NMMA and rainfall increases in the foothills and mountains due to the orographic (elevation) effect. The average annual evapotranspiration from standard turf (a well-watered actively growing closely clipped grass that is completely shading the soil) is 52 inches, and is referred to as the reference evapotranspiration (Table 2-1).
Table 2-1. Climate in the Nipomo Mesa Area

<table>
<thead>
<tr>
<th></th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Max Temp</td>
<td>63.1</td>
<td>64.3</td>
<td>64.7</td>
<td>66.9</td>
<td>70.5</td>
<td>72.8</td>
<td>73.2</td>
<td>74.3</td>
<td>73.4</td>
<td>69.1</td>
<td>64.4</td>
<td>68.7</td>
<td></td>
</tr>
<tr>
<td>(Fahrenheit)¹</td>
<td></td>
</tr>
<tr>
<td>Average Min Temp</td>
<td>38.9</td>
<td>40.9</td>
<td>42.1</td>
<td>43.4</td>
<td>46.8</td>
<td>50.0</td>
<td>53.0</td>
<td>53.6</td>
<td>52.1</td>
<td>47.9</td>
<td>42.5</td>
<td>38.6</td>
<td>45.8</td>
</tr>
<tr>
<td>(Fahrenheit)¹</td>
<td></td>
</tr>
<tr>
<td>Average Rainfall</td>
<td>3.31</td>
<td>3.35</td>
<td>2.75</td>
<td>1.09</td>
<td>0.24</td>
<td>0.03</td>
<td>0.02</td>
<td>0.04</td>
<td>0.21</td>
<td>0.66</td>
<td>1.56</td>
<td>2.26</td>
<td>15.52</td>
</tr>
<tr>
<td>(inches)²</td>
<td></td>
</tr>
<tr>
<td>Monthly Average</td>
<td>2.21</td>
<td>2.50</td>
<td>3.80</td>
<td>5.08</td>
<td>5.70</td>
<td>6.19</td>
<td>6.43</td>
<td>6.09</td>
<td>4.87</td>
<td>4.09</td>
<td>2.89</td>
<td>2.28</td>
<td>52.13</td>
</tr>
<tr>
<td>Reference Evapotranspiration</td>
<td></td>
</tr>
<tr>
<td>(inches)³</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Data from Santa Maria Airport - Nearest long-term temperature record to the NMMA in the Western Regional Climate Center is from the Santa Maria Airport, station #47946. The average is from 1948 through 2005. Source: http://www.wrcc.dri.edu/climsum.html.
2. Data from CDF Nipomo Rain Gauge 151.1 (1959 to 2010).
3. Data from California Irrigation Management Information System (CIMIS) - Records at Nipomo (202) are less than 5 years; therefore, CIMIS reports the regional average for Central Coast Valleys for Station #202. Source: http://www.cimis.water.ca.gov/cimis/data.jsp.

2.3. **Hydrogeology**

Groundwater management is founded upon an understanding of the geology and the groundwater flow regime specific to the Nipomo Mesa Management Area.

2.3.1. **Geology**

The Nipomo Mesa Management Area overlies part of the northwest portion of and is contiguous with the Santa Maria Valley Groundwater Basin (Figure 1-1). The unconsolidated sedimentary deposits comprising the main aquifers of the groundwater basin underlying the NMMA include the Pliocene age Careaga Formation, the Plio-Pleistocene age Paso Robles Formation. These basin sedimentary formations are overlain by Quaternary age dune sands on the Mesa, and by the Quaternary age alluvium in Los Berros Valley and in Nipomo Valley (on the eastern perimeter of the NMMA) which, where saturated, are also aquifers. These sedimentary beds have been deposited within the Santa Maria Valley synclinal basin. The pre-Quaternary age sedimentary beds have been displaced by faults within and on the perimeter of the basin. The extent of the geologic formations and the faulting within the NMMA area are shown on the following geologic map. Further information on these geologic formations and the geologic structure is available in the 2nd Annual Report Calendar Year 2009.

The deep aquifers within the Paso Robles and Careaga Formations underlying the Nipomo Mesa comprise the main source of water for municipal and agricultural wells. The shallow aquifers in the Los Berros Valley alluvium and Nipomo Mesa dune sands are tapped by lower capacity domestic and agricultural wells. These deep and shallow aquifers are generally separated vertically by confining layers.

2.3.2. **Groundwater Flow Regime**

Groundwater flows within the NMMA from recharge sources toward areas of groundwater discharge. Groundwater flow is controlled by:
Groundwater level hydrographs show measured groundwater elevations over time within the specific aquifers tapped by a well and are site-specific for specific times. Groundwater elevation measurements within an aquifer are mapped and interpreted to develop groundwater contours. Groundwater contour maps provide an interpreted understanding of the hydraulic head conditions within specific aquifer zones.

The following paragraphs present our current understanding of the groundwater flow regime. This understanding includes groundwater flow along the borders of the NMMA and groundwater flow within the NMMA.

Groundwater flow at the NMMA Borders

The NMMA area encompasses only part of the Santa Maria groundwater basin. Groundwater flow to/from the adjacent portions of the basin can be expected to occur, but less subsurface flow is likely to occur along bedrock basin edges than between areas where there is continuity of the aquifers.

The eastern border of the NMMA is approximately coincident with Nipomo Creek in Nipomo Valley. Groundwater recharge from the creek may occur through the shallow creek deposits but minimal subsurface inflow into the NMMA area occurs from the bedrock underlying the creek alluvium.

The northern border of the NMMA is coincident with the creek alluvium – Paso Robles Formation boundary within Los Berros Creek Valley. It is underlain by alluvium that receives recharge from Los Berros Creek which may be a significant source of groundwater recharge. Formations north of the Los Berros Valley include sedimentary deposits and underlying Franciscan Complex. The sedimentary deposits are unsaturated and the Franciscan Complex has low hydraulic conductivity, and any groundwater flow from these formations to the NMMA is likely negligible.

The northwest border of the NMMA is at the base of the Mesa along the Cienega Valley of Arroyo Grande Creek. Groundwater flow across this border can occur but may be influenced by fault barriers and is impeded at the bedrock outcrop at Nipomo Hill. A cross-section along the north edge of the Mesa is being developed to provide a subsurface characterization of the geology. Hydrogeologic parameters can then be used, along with groundwater levels to estimate the amount of flow that occurs at this interface between the Nipomo Mesa Management Area and the Northern Cities Management Area.

The southern border of the NMMA is at the base of the Mesa along the Santa Maria River Valley. Groundwater flow across this border is likely to occur. The cross sectional area along this contact is being developed to provide a subsurface characterization of the geology. Hydrogeologic parameters can then be used, along with groundwater levels to estimate the amount of flow that occurs at this interface between the Nipomo Mesa Management Area and the Santa Maria Valley Management Area.

The western border of the NMMA is a combination of the east-west R3 administrative line from the Cienega Valley to the coast and south along the coastline. Groundwater flow has historically occurred from land to the ocean across this border. This border is particularly important because a reversal of flow across this border may result in seawater intrusion.

Along the coastal portion of the NMMA, there is a potential for seawater intrusion to occur. The risk of seawater intrusion to NMMA water supply is a function of the groundwater level, the depth of the
Aquifer, the structural geology and stratigraphy, and the location of a seawater-fresh groundwater interface. Along the coastal portion of the NMMA, it is not known if the principal aquifers are exposed on the seafloor. The nearest known aquifer exposure on the seafloor occurs to the north of the NMMA area. A further risk of seawater intrusion to NMMA water supply could exist along vertical migration pathways in a near coastal zone. Seawater intrusion is minimized where offshore gradients exist, and could occur most rapidly if the onshore aquifers are pumped in excess of fresh water replenishment.

Groundwater flow within the NMMA

Groundwater flow within the NMMA is influenced by geologic features and recharge/discharge points and boundaries. The groundwater flow boundaries defined by geologic features are along the Los Berros Valley/Nipomo Mesa and faults within the Nipomo Mesa. Aquitards within the Nipomo Mesa restrict vertical groundwater flow particularly between the shallow and deep aquifers. Recharge sources include major point sources (Los Berros Creek, stormwater runoff basins and wastewater percolation ponds) and distributed recharge sources (septic systems, percolation of rainfall and irrigation return flows). Discharge locations include pumping wells, areas of surface outflow, and phreatophyte consumption.

Groundwater flow from the Los Berros Creek alluvium toward the Mesa can occur where the alluvium overlies or is in contact with the shallow and deep aquifers along the southern edge of the Los Berros Valley. A cross section along this alignment is being developed to provide a subsurface characterization of the geology. Hydrogeologic parameters can then be used, along with groundwater levels, to estimate the amount of flow that occurs at Los Berros Valley alluvium/Mesa basin sediments interface.

Faults have been identified by the California Department of Water Resources (2002) and by previous geological studies (Figure 2-1). These studies identify multiple faults that cross the NMMA. These faults have been interpreted to vertically displace the pre-Holocene geologic units. The overlying dune sands do not appear to be displaced along these faults. The faults could impede flow within basin sedimentary beds. Current seismic studies are being performed for Pacific Gas and Electric Company as mandated by the Nuclear Regulatory Commission for permitting operation of the Diablo Nuclear Power Plant. These studies can be expected to provide additional information that can be used to improve the definition of faulting in the NMMA.

Aquitards that influence vertical migration of groundwater between aquifers have varying thicknesses and hydraulic conductivities (Figure 2-2). A significant aquitard exists in some areas near the base of the dune sand deposits that may confine groundwater in underlying aquifers. Locally groundwater may be perched above the aquitard. Some leakage is likely to occur where the aquitard hydraulic conductivity increases and thickness decreases. The extent and thickness of the aquitard have been defined based on well logs, correlations, or inferred based on groundwater levels.
Figure 2-1. NMMA Geology and Faults.

Figure 2-2. Schematic of Confining Layer and Confined Aquifer (Bachman et al, 2005).
3. Data Collection

The TG is monitoring and analyzing water conditions in the NMMA in accordance with the requirements of the Stipulation and Judgment. The Stipulating Parties are required to provide monitoring and other production data at no charge, to the extent that such data are readily available. The TG has developed protocols concerning measuring devices in order to obtain consistency with the Monitoring Programs of other Management Areas. Discussions of these subjects are presented in the following sub sections of this 3rd Annual Report Calendar Year 2010.

3.1. Data Collected

The data presented in this section of the annual report was measured during the calendar year 2010 and is the subject of this Annual Report. Groundwater elevations, water quality, rainfall, surface water, land use, groundwater production and waste water discharge data were compiled and are presented in the following sections.

3.1.1. Groundwater Elevations in Wells

Groundwater elevation is determined by measuring the depth to water in a well from a reference point at the top of the well casing. The reference point and depth to water data are collected from each agency and input into a TG database that includes groundwater elevation determinations. The date, depth to water, measuring agency, pumping condition, and additional comments are recorded. When the database is updated with new data, an entry is posted in the database log describing the changes that have been made to the database. The groundwater elevation measurements are subjected to Quality Assurance/Quality Control procedures adopted by the TG in part by reviewing historical hydrographs to determine if the measurements are within the historical range for the given well.

The accuracy of the groundwater elevations depends on measurement protocols, the reference point and local drawdown effects at that well. The TG surveyed the elevation for all the reference points at each Key Well in February of 2009. Additional elevation surveys for all monitoring program wells are scheduled for the continued improvement of groundwater elevations accuracy. Furthermore, protocol standards were developed by the TG regarding the length of time for well shut down before a groundwater elevation measurement is taken, and a notation of whether nearby wells are known to be concurrently pumping.

Depth-to-water measurements were collected in the April and October of 2010 by the County of San Luis Obispo. In addition Nipomo Community Services District, ConocoPhillips, Woodlands, Golden State Water Company, Cypress Ridge Golf Course, and the USGS collected depth-to-water measurements in calendar year 2010 (Figure 3-1, Figure 3-2).

3.1.2. Water Quality in Wells

Water quality of the NMMA and adjacent areas is summarized from a wide range of data sources, including:

♦ California Department of Public Health water quality records of water supply system groundwater sources;
♦ Regional Water Quality Control Board waste discharge reports, site assessments, remediation project reports and related materials;
State Water Resources Control Board site assessments, remediation project reports and related materials (GeoTracker database);

California Department of Toxic Substances Control site assessments and related materials;

US Geological Survey ambient groundwater monitoring program (GAMA) data and reports; and

Other NMMA groundwater production monitoring data.

Data reported in this annual report are derived from samples obtained using standard professional sampling protocols and analyzed at certified laboratories. The TG maintains these data in a digital database. In the NMMA, historical data from approximately 200 wells can be used to map groundwater quality conditions in both the Shallow and Deep aquifers. In some cases, water quality records consist of only one or two sampling events from a well, and with only a few water quality parameters, such as total dissolved solids or chloride. In other cases such as wells within the potable water systems, regular groundwater quality testing for a wide range of constituents is conducted.

Groundwater quality in wells near the ocean is of considerable importance because this is the most likely site where any intrusion of seawater would first be detected. Coastal nested monitoring well site 11N/36W-12C (west of the ConocoPhillips refinery; Figure 1-3) is monitored under agreement with SLO County and is scheduled to provide quarterly water quality sampling of general mineral and physical water quality constituents subject to access constraints for the protection of endangered species. In addition to monitoring this coastal site for water quality, the TG has pursued ways of updating coastal monitoring near the former nested well site 13K2-K6 adjacent to Oso Flaco Lake.

Locally, shallow groundwater quality is impacted by high concentrations of total dissolved solids, chloride and nitrate, and two municipal supply wells are known to require treatment or blending because of high nitrate concentrations. No other contaminants are known to impact local use of groundwater supplies for domestic or irrigation purposes.

3.1.3. Rainfall

There are six active rainfall gauges available to estimate the NMMA rainfall (Figure 3-4). Three stations are part of the ALERT Storm Watch System, Nipomo East (728), Nipomo South (730), and Oceano (795). One station is a California Irrigation Management Information System (CIMIS station), CIMIS (202). The other three stations are active volunteer gauges and include Mehlschau (38), and Nipomo CDF (151.1). The data are collected by the County of San Luis Obispo Department of Public Works (SLO DPW) and CIMIS. The TG obtains these data by filing a data request with County Public Works at the beginning of the calendar year for the rainfall data from the preceding year. SLO DPW staff collects volunteer gauge data once each year in the month of July for the previous year, July through June. Rainfall data are often compiled on a water year basis. A water year typically begins October 1st and ends September 30th of the following year, and the year referenced is that of September (i.e., WY2003 is defined as October 1, 2002, through September 30, 2003). For the volunteer gauges, data collected from July 2010 to December 2010 is unavailable until July 2011, when County staff collects and compiles the rainfall data.

The WY2010 rainfall totals are approximately 130 percent of the long-term average (Table 3-1). The next water year ending September 30th, 2011, will be likely greater than the long-term average. Reference evapotranspiration for calendar year 2010 is 41.7 inches, as compared to 43.5 inches in calendar year 2009.
Table 3-1. Rainfall Gauges and 2010 Rainfall Totals

<table>
<thead>
<tr>
<th>Rainfall Station</th>
<th>Period of Record</th>
<th>Period of Record Mean</th>
<th>Water Year 2010<sup>1</sup></th>
<th>Calendar Year 2010</th>
<th>Percent of Normal<sup>2</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nipomo East (728)</td>
<td>2005-2010</td>
<td>15.6</td>
<td>20.30</td>
<td>31.82</td>
<td>130%</td>
</tr>
<tr>
<td>Nipomo South (730)</td>
<td>2005-2010</td>
<td>14.6</td>
<td>17.05</td>
<td>28.86</td>
<td>110%</td>
</tr>
<tr>
<td>Oceano (795)</td>
<td>2005-2010</td>
<td>12.8</td>
<td>17.20</td>
<td>26.33</td>
<td>111%</td>
</tr>
<tr>
<td>CIMIS Nipomo (202)</td>
<td>2006-2010</td>
<td>11.2</td>
<td>17.61</td>
<td>28.11</td>
<td>114%</td>
</tr>
<tr>
<td>Nipomo CDF (151.1)</td>
<td>1958-2010</td>
<td>15.5</td>
<td>20.07*</td>
<td>NA</td>
<td>129%</td>
</tr>
<tr>
<td>Mehlschau (38)</td>
<td>1920-2010</td>
<td>16.7</td>
<td>21.82*</td>
<td>NA</td>
<td>140%</td>
</tr>
</tbody>
</table>

Notes:
- NA - Data not available for July 2010 and after.
- 1. Water Year is defined as Oct. 1 of previous year through Sept. 30 of the current year.
- 2. Percent of Normal, calculated using the period of record annual averages for the #151.1.
- * Voluntary gauge data collection occurs in July of each year, and the remainder of WY rainfall is assumed to be zero.

3.1.4. Rainfall Variability

Quantifying the temporal and spatial variability is critical where rainfall is a large portion of the water supply. Spatial variability in the volume of rainfall across the NMMA is apparent when comparing the WY2010 rainfall totals from these gauges. The WY2010 total rainfall ranges from 17.05 inches (Nipomo South #730) to 20.30 inches (Nipomo East #728).

Climatic trends and interannual variability also impact the water supply to the NMMA. The cumulative departure from the mean was prepared for three rain gauge stations Mehlschau (38) and CDF Nipomo (151.1) over the period from water year 1975 to water year 2010 (Figure 3-5). Periods of wetter than average and drier than average conditions are coincident at both gauges. The most pronounced drying period occurred from 1983 to 1994, followed by a wetter than average period from 1994 to 1998, and 2010. Water years 2007, 2008, and 2009 have been drier than average.

3.1.5. Streamflow

Currently, there are some records of streamflow within the NMMA. On Los Berros Creek, the Los Berros 757 streamflow sensor is located 0.8 miles downstream from Adobe Creek and 3.7 miles north of Nipomo on Los Berros Road and the Valley Road (Sensor 731) is located on at the Valley Road bridge over Los Berros Creek (Figure 3-6). The data at the Los Berros gauge are compiled by San Luis County Department of Public Works. Nipomo Creek streamflow is not currently gauged.

3.1.6. Surface Water Usage

There are no known diversions of surface water within the NMMA.
3.1.7. **Surface Water Quality**

Surface water quality samples were taken in Nipomo Creek in 2001 and 2002 and in Los Berros Creek in 2002 and 2003 for the Central Coast Ambient Monitoring Program (www.ccamp.org). Nipomo Creek was listed as an impaired water body because of fecal coliform counts in exceedance of the basin plan standard. There are no known surface water quality samples taken since the CCAMP sampling.

3.1.8. **Land Use**

Land use data historically has been collected for the NMMA by the DWR at approximately ten year intervals since 1959. DWR periodically performs land use surveys of the Southern Central Coast area (which includes the NMMA). The TG will decide when the next land use survey should be completed. Ideally, DWR will update the land use for the South Central Coast area (which includes the NMMA) in the future for the next land use survey. The status of the DWR land use program for the Southern District can be accessed at ([http://www.dpla.water.ca.gov](http://www.dpla.water.ca.gov/sd/land_use/landuse_surveys.html)).

The most recent DWR Land Use survey that covers the NMMA was in 1996. The 2007 NMMA land use was classified by applying the DWR methodology to a June 2007 one-foot resolution aerial photograph. Land use was classified into four main categories based on the methodology used by DWR in 1996; agriculture, urban, golf course and native vegetation (undeveloped lands).

Agricultural lands for 2009 were further subdivided using the San Luis Obispo County Agriculture Commissioner survey of the 2009 crop types and acreage for San Luis Obispo County. The major crops grown on in the NMMA are strawberries, vegetable rotational, avocados, and nursery plants.

Urban lands were classified following the DWR methodology with additional sub categories based on San Luis Obispo County land use categories from land use zoning maps. The categories for urban include (1) Commercial-Industrial; (2) Commercial-office; (3) Residential Multi-family; (4) Residential-Single Family; (5) Residential-Suburban; (6) Residential-Rural; (7) Recreational grass; (8) Vacant. Golf courses were classified separately from Agricultural or Urban Lands.

Native vegetation lands were classified following the 1996 DWR methodology. In the DWR methodology, all undeveloped land was classified as native vegetation and includes groves of non-native eucalyptus and fields of non-native grasses. The lands classified as native vegetation were further broken down into two categories: grasses; and trees and shrubs; to better estimate deep percolation of rainfall required for the hydrologic inventory (see Section 5 Hydrologic Inventory).

The land use acreage for Urban is 10,246 acres; for Agriculture is 2,587 acres; and for Native is 8,314 acres. Sub categorical land use acreage is also defined and will subsequently be utilized to compute the groundwater productions and consumptive use of water for each subcategory (Table 3-2).
Table 3-2. 2010 Land Use Summary

<table>
<thead>
<tr>
<th>Land Use Category</th>
<th>Year of Data</th>
<th>Acreage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commercial - Industrial</td>
<td>2007</td>
<td>472</td>
</tr>
<tr>
<td>Commercial - Office</td>
<td>2007</td>
<td>118</td>
</tr>
<tr>
<td>Golf Course</td>
<td>2007</td>
<td>549</td>
</tr>
<tr>
<td>Residential Multi-family</td>
<td>2007</td>
<td>24</td>
</tr>
<tr>
<td>Residential Single Family</td>
<td>2007</td>
<td>821</td>
</tr>
<tr>
<td>Residential Suburban</td>
<td>2007</td>
<td>3,597</td>
</tr>
<tr>
<td>Residential Rural</td>
<td>2007</td>
<td>4,629</td>
</tr>
<tr>
<td>Recreational grass</td>
<td>2007</td>
<td>36</td>
</tr>
<tr>
<td>Urban Total</td>
<td>2007</td>
<td>10,246</td>
</tr>
<tr>
<td>Agriculture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deciduous</td>
<td>2009</td>
<td>2</td>
</tr>
<tr>
<td>Pasture</td>
<td>2009</td>
<td>2</td>
</tr>
<tr>
<td>Vegetable rotational</td>
<td>2009</td>
<td>225</td>
</tr>
<tr>
<td>Avocado and Lemons</td>
<td>2009</td>
<td>277</td>
</tr>
<tr>
<td>Strawberries</td>
<td>2009</td>
<td>1,393</td>
</tr>
<tr>
<td>Nursery</td>
<td>2009</td>
<td>332</td>
</tr>
<tr>
<td>Non-irrigated farmland</td>
<td>2007</td>
<td>356</td>
</tr>
<tr>
<td>Agriculture Total</td>
<td>2007</td>
<td>2,587</td>
</tr>
<tr>
<td>Native Vegetation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fallow Ag Land</td>
<td>2007</td>
<td>234</td>
</tr>
<tr>
<td>Native Trees and Shrubs</td>
<td>2007</td>
<td>2,657</td>
</tr>
<tr>
<td>Native Grasses</td>
<td>2007</td>
<td>4,579</td>
</tr>
<tr>
<td>Urban Vacant</td>
<td>2007</td>
<td>765</td>
</tr>
<tr>
<td>Water Surface</td>
<td>2007</td>
<td>9</td>
</tr>
<tr>
<td>Unclassified</td>
<td>2007</td>
<td>70</td>
</tr>
<tr>
<td>Native Total</td>
<td>2007</td>
<td>8,314</td>
</tr>
<tr>
<td>Total Land Use</td>
<td></td>
<td>21,147</td>
</tr>
</tbody>
</table>

3.1.9. Groundwater Production (Reported and Estimated)

The groundwater production data presented in this section of the annual report were collected for calendar year 2010. Where groundwater production records were unavailable, the groundwater production was estimated for calendar year 2010 (Figure 3-7). Refinements to methodologies supporting groundwater production estimates were made and are reflected in this 3rd Annual Report Calendar Year 2010. The new methodology was applied to the base data presented in the 2nd Annual Report Calendar Year 2009 and the resulting groundwater production estimates are presented in Appendix E, Table 1.
Reported Groundwater Production

Individual landowners, public water purveyors, and industry all rely on groundwater pumping from the aquifers underlying the NMMA. Data were requested by the TG from the public water purveyors and individual pumpers and incorporated in this calendar year 2010 Annual Report. Stipulating Parties to the Judgment are required to provide monitoring and other production data at no charge, to the extent that such data have been generated and are readily available.

Stipulating parties provided production records that report a total of 6,200 AF (AF) of groundwater produced in calendar year 2010 (Table 3-3), a decrease of 540 AF from last year. Woodlands increase in production is consistent with the planned build-out of the development; however this increase is offset by reductions occurring from other parties. NCSD, GSWC, and RWC production is lower this year as compared to last year. Two facts likely influence these reductions, climatic demand and conservation. Reduced climatic demands likely account for the lesser portion and conservation the larger portion of the total reduction.

Table 3-3. Calendar Year 2010 Reported Groundwater Production

<table>
<thead>
<tr>
<th>Stipulating Parties</th>
<th>Production (AF/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCSD</td>
<td>2,370</td>
</tr>
<tr>
<td>GSWC</td>
<td>1,060</td>
</tr>
<tr>
<td>Woodlands</td>
<td>850</td>
</tr>
<tr>
<td>ConocoPhillips</td>
<td>1,200</td>
</tr>
<tr>
<td>RWC</td>
<td>720</td>
</tr>
<tr>
<td>Subtotal</td>
<td>6,200</td>
</tr>
</tbody>
</table>

Estimated Production

The estimated production for agricultural crops in the NMMA is 2,800 AF computed on a daily time-step by multiplying the crop area and the crop specific water demand met by either soil moisture, rainfall, or groundwater production, thus developing the unit production for calendar year 2010 (Table 3-4). A detailed explanation of the methodology used for this estimate is provided in Appendix E, Table 2.
Table 3-4. 2010 Estimated Groundwater Production for Agricultural

<table>
<thead>
<tr>
<th>Crop Type</th>
<th>2010 Area</th>
<th>2010 Unit Production</th>
<th>2010 Production</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acres</td>
<td>AF/acre</td>
<td>AF/yr</td>
</tr>
<tr>
<td>Deciduous</td>
<td>2</td>
<td>2.5</td>
<td>5</td>
</tr>
<tr>
<td>Pasture</td>
<td>2</td>
<td>2.8</td>
<td>6</td>
</tr>
<tr>
<td>Vegetable Rotational</td>
<td>225</td>
<td>2.0</td>
<td>450</td>
</tr>
<tr>
<td>Avocado and Lemon</td>
<td>277</td>
<td>1.6</td>
<td>440</td>
</tr>
<tr>
<td>Strawberries</td>
<td>1,393</td>
<td>1.1</td>
<td>1540</td>
</tr>
<tr>
<td>Nursery</td>
<td>332</td>
<td>1.1</td>
<td>360</td>
</tr>
<tr>
<td>Un-irrigated Ag Land</td>
<td>356</td>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>2,587</td>
<td></td>
<td>2800¹</td>
</tr>
</tbody>
</table>

Estimated groundwater production for urban use was estimated for rural landowners not served by a purveyor. The total estimated production for the rural landowners is 1,950 AF for calendar year 2010 (Table 3-5).

Table 3-5. Estimated Groundwater Production for Rural Landowners

<table>
<thead>
<tr>
<th>Land Use Type</th>
<th>Water Use Area (acres)</th>
<th>Unit Production (AF/acre)¹</th>
<th>Production (AF/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Golf Course</td>
<td>549</td>
<td>1.56</td>
<td>856</td>
</tr>
<tr>
<td>451RS Zoned Parcels</td>
<td>172</td>
<td>2.63</td>
<td>452</td>
</tr>
<tr>
<td>616 RR Zoned Parcels</td>
<td>243</td>
<td>2.62</td>
<td>637</td>
</tr>
<tr>
<td>Total</td>
<td>414.75</td>
<td></td>
<td>1,950²</td>
</tr>
</tbody>
</table>

Note:
1. Unit production values from NCSD 2007, Water and Sewer Master Plan Update

Combining the estimates of groundwater production for Stipulating Parties (Table 3-3), for Agriculture (Table 3-4) and Rural Landowners (Table 3-5) results in an estimated total groundwater production of 10,950 AF for calendar year 2010 (Table 3-6).

¹ This number has been rounded to reflect accuracy in estimation.
² This number has been rounded to reflect accuracy in estimation.
Table 3-6. 2010 Measured and Estimated Groundwater Production (AF/yr)

<table>
<thead>
<tr>
<th></th>
<th>Measured</th>
<th></th>
<th>Estimated</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCSD</td>
<td>2,370</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GSWC</td>
<td>1,060</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Woodlands</td>
<td>850</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ConocoPhillips</td>
<td>1,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RWC</td>
<td>720</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td>6,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Estimated</td>
<td></td>
</tr>
<tr>
<td>Rural Landowners</td>
<td>1,950</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agriculture</td>
<td>2,800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total NMMA Production</td>
<td>10,950</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.1.10. Wastewater Discharge and Reuse

Five wastewater treatment facilities (WWTF) discharge treated effluent within the NMMA: the Southland Wastewater Works (Southland WWTF), the Blacklake Reclamation Facility (Blacklake WWTF), Rural Water Company’s Cypress Ridge Wastewater Facility (Cypress Ridge WWTF), the Woodlands Mutual Water Company Wastewater Reclamation Facility (Woodlands WWTF), and the Golden States Water Company La Serena Treatment System (La Serena) (Figure 3-8). The total WWTF effluent in the NMMA was 640 AF for calendar year 2010 (Table 3-7).

Table 3-7. 2010 Wastewater Volumes

<table>
<thead>
<tr>
<th>WWTF</th>
<th>Influent (AF/yr)</th>
<th>Estimated Effluent (AF/yr)</th>
<th>Re-use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Southland</td>
<td>534</td>
<td>474 (1)</td>
<td>Infiltration</td>
</tr>
<tr>
<td>Blacklake</td>
<td>82</td>
<td>70 (1)</td>
<td>Irrigation</td>
</tr>
<tr>
<td>Cypress Ridge</td>
<td>Not Reported</td>
<td>47</td>
<td>Irrigation</td>
</tr>
<tr>
<td>Woodlands</td>
<td>Not Reported</td>
<td>39</td>
<td>Irrigation</td>
</tr>
<tr>
<td>La Serena</td>
<td>Not Reported</td>
<td>6 (2)</td>
<td>Infiltration</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>640</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Effluent was estimated as the sum of Influent - Evaporation from Aeration Ponds - 10% of Influent to account for biosolid removal. For the Nipomo Mesa, the calendar year 2010 annual evapotranspiration is approximately 41.7 inches (CIMIS, 2010) and the 2010 rainfall at CIMIS is approximately 28.11 inches year (CIMIS 202). This results in a net evaporation from a pond of 13.6 inches per year.
2. GSWC’s La Serena Groundwater Manganese Removal Treatment Plant treats water from GSWC’s La Serena and Eucalyptus wells. Filter backwash water is discharged to percolation ponds, where water infiltrates in the basin.
3.2. **Database Management**

The database of monitoring data is an entirely digital database and is maintained in Microsoft Excel. The database is broken into five datasets: Groundwater elevation, groundwater quality, rainfall, groundwater production, and land use.

NCSD’s technical representative is currently designated as the database steward and is responsible for maintaining and updating the digital files and for distributing any updated files to other members of the TG. A “change log” is maintained for each database. The date and nature of the change, along with any special features, considerations or implications for linked or related data are recorded in the change log.

3.3. **Data and Estimation Uncertainties**

Uncertainties exist in data, and therefore uncertainties exist in derivatives of data including interpretations and estimations made from direct measurements. Uncertainties arise from errors in measurements, missing measurements, and inaccurate methodologies and generalizing assumptions. For example, rainfall is measured at a few locations across the NMMA. However, it is well known that the spatial and temporal variability in rainfall deposition in a storm is much greater than that which the density of rainfall gauges can represent. Ground surface elevation across the NMMA is known to be in error at places and may be reported incorrectly by amounts as large as 20 feet. This affects the accuracy of groundwater elevations and contours. There exists missing data from both groundwater elevations and rainfall records. Estimations are made to fill in these data gaps with the understanding that the accuracy of these estimates is reduced. Derivatives from these data therefore contain inaccuracies. Additionally, precision issues arise when interpretations are made from data, in that individuals make decisions during the process of interpreting data that are subjective and therefore not documentable. For example, aerial image classification is a subjective process as is the preparation of groundwater elevation contours. Estimations are made for parameters that are not measurable or very difficult to measure. The methodologies used to make estimates represent a simplified numerical representation of the environment and are based on assumptions defining these simplifications. Quantifying the uncertainty in data or data derivatives is a rigorous and ongoing process.

The measured groundwater production values are reliable and are considered precise to the tens place for NCSD, GSWC, and Woodlands, RWC and the hundreds place for ConocoPhillips. The estimated production values are less reliable and precise for the rural residence groundwater production. The unit production factors used to estimate the rural residence groundwater production were developed for the NCSD Water and Sewer Master Plan (see Section 3.1.8 Land Use). For the estimated agricultural production, there is no measured data available in the NMMA to verify the precision or reliability of the agricultural production.
Figure 3-1. 2010 Spring Groundwater Elevations

NOTES:
Coordinate System: UTM Zone 10N
Horizontal Datum: NAD 83

2010 Spring Groundwater Elevations (ft msl)
Streams
Highway
Nipomo Mesa Management Area
Water Body

Date: 4/21/11
By: J. Herbert

NMMA Technical Group

Copy of document found at www.NoNewWipTax.com
Figure 3-2. 2010 Fall Groundwater Elevations

NOTES:
Coordinate System: UTM Zone 10N
Horizontal Datum: NAD 83

2010 Fall GW Elevations (ft msl)
Streams
Highway
Nipomo Mesa Management Area
Water Body

DATE: 4/21/11
BY: J. Herbert

NMMA Technical Group

Copy of document found at www.NoNewWipTax.com
Figure 3-3. Locations of Water Quality Data
Figure 3-4. Rainfall Station Location and Water Year 2010 Annual Rainfall
Figure 3-5. Cumulative Departure from the Mean for the following rain gauges: Mehlschau (38) and Nipomo CDF (151.1)
Figure 3-6. Location of Stream Flow Sensors

NOTES:
Coordinate System: UTM Zone 10N
Horizontal Datum: NAD 83
Station Locations: SLO County

Location of Stream Flow Sensors

Stream Flow Sensor
Streams
Highway
Nipomo Mesa Management Area
Road
Water Body

Date: 2/18/10
By: J. Degner

Copy of document found at www.NoNewWipTax.com
Figure 3-7. 2010 Groundwater Use

Groundwater Use Categories

- 2,800 AF Agriculture
- 2,370 AF Nipomo Community Service District
- 1,960 AF Rural Residences
- 1,200 AF ConocoPhillips
- 1,060 AF Golden State Water Company
- 850 AF Woodlands Mutual Water
- 720 AF Rural Water Company
- 0 AF Non-Irrigated

NOTES:

Base Map: June 2007 K. Curtis 1-ft-res aerial photo
Coordinate System: NAD 83, UTM Zone 10N
Datum: NAD83
Horizontal Datum: NAD 83

DATE: 03/24/11 BY: B. Newton

NMMA Technical Group
4. **Water Supply & Demand**

Presented in this section are discussions of the various components of current and projected estimates of water supplies and demands for the NMMA.

4.1. **Water Supply**

The water supplies supporting the activities within the NMMA are met primarily from groundwater production with a minor amount of recycled water. No surface water diversions exist, nor is there currently any imported water. Nipomo Supplemental Water, as defined by the Stipulation, is being developed and delivery is expected within the next few years. A brief description of the groundwater production, recycled water, Supplemental Water, and surface water diversion is presented in the following sections.
4.1.1. Groundwater Production

Currently, groundwater pumping is not differentiated between various strata, shallow or deep aquifers. The specifics of shallow and deep aquifer production are better known by the TG for purveyor wells which produce primarily from the deep aquifer, but this information is not available for many more private wells in the NMMA.

Shallow Aquifer

Domestic production by rural landowners was estimated to be about 1,090 AF/yr (see Table 3-5. Estimated Groundwater Production for Rural Landowners). The majority of this production may be from the Shallow Aquifer. A portion of the estimated 2,800 AF agricultural pumping may also be from the Shallow Aquifer.

Deep Aquifers

All production from wells used for public drinking water and industrial water is likely pumped from the Deep Aquifers (primarily the Paso Robles Aquifer). This pumping is estimated to be about 7,060 AF (see Table 3-4 and Table 3-5). In addition, a portion of the estimated 2,800 AF/yr of agricultural pumping may also be produced from the Deep Aquifers.

4.1.2. Recycled Water

Wastewater effluent from the golf course developments at Blacklake Village, Cypress Ridge, and Woodlands is recycled and utilized for golf course irrigation. The amount of recycled water used in calendar year 2010 for irrigation at Blacklake Village, Cypress Ridge and Woodlands are 70 AF, 47 AF, and 39 AF, respectively (see Section 3.1.10 Wastewater Discharge and Reuse).

4.1.3. Supplemental Water

There was no Nipomo Supplemental Water delivered to the NMMA in calendar year 2010.

4.1.4. Surface Water Diversions

There are no known surface water diversions within the NMMA.

4.2. Water Demand

The water demands in the NMMA include urban (residential, commercial, industrial), golf course, and agricultural demands which are met entirely from groundwater production. The TG used a variety of methods to estimate the water demands of the respective categories (see Section 3.1.9 Groundwater Production (Reported and Estimated)).

4.2.1. Historical Demand

The historical demand estimated for urban (including golf course and industrial) and agricultural land uses has been steadily increasing since 1975 with urban accounting for the largest increase in total volume and percentage (Figure 4-1).
4.2.2. Current Demand

The estimated groundwater production is 10,950 AF for Calendar Year 2010, based on annual groundwater production records provided by the water purveyors on the Nipomo Mesa and based on an estimated groundwater production by land use area (see Section 3.1.8 Land Use). This amount of groundwater production represents a decrease of 1,250 AF from the previous year, as reported in the 2nd Annual Report Calendar Year 2009. The TG has not differentiated the causes of this reduction; possible causes include reduced potential evapotranspiration, conservation measures, and economic forces.

4.2.3. Potential Future Production (Demand)

The projected future demand for NCSD is an increase from 2,293 AF/yr in calendar year 2010 to 3,400 AF/yr in 2030 (NCSD, UWMP 2010 – Table 21 and 23). The ConocoPhillips refinery expects future production to be similar to recent years’ production amounts of approximately 1,200 AF/yr. The projected water demand for Woodlands at build-out according to the Woodlands Specific Plan EIR is 1,600 AF/yr (SLO, 1998). The projected water demand for the GSWC at full build-out of current service area is estimated to potentially increase to approximately 1,940 AF/yr in 2030 (GSWC, 2008). Currently, no estimate of potential future production for agriculture has been developed. Future production from the Groundwater Basin is restricted by San Luis Obispo County Ordinance §3090 (adopted May 2006) which provides that Land Divisions authorized by the current South County Area Plan (Inland) pay a supplemental water charge Not-to-Exceed $13,200 for each dwelling unit equivalent and further provides that future General Plan Amendments will not be approved unless supplemental water to offset the proposed development’s estimated increase in non-agricultural demand has been specifically allocated for exclusive use of the development resulting from the General Plan Amendment and is available for delivery to the Nipomo Mesa Water Conservation Area. In the future, it is expected that a portion of the demand will be met by the Supplemental Water Project and delivery of supplemental water, and possibly better utilization of recycled water. It should be noted that the County of San Luis Obispo has yet to formally adopt a supplemental water in-lieu fee; and absent the adoption, there is some uncertainty about the supplemental water in-lieu fee to be applied in accordance with County Ordinance §3090.
5. **Hydrologic Inventory**

The hydrologic inventory accounts for the volumes of water that flow in and out of the aquifers in the study area resulting in the change in storage. A conceptual schematic depicts the inflows and outflows to the aquifers underlying the NMMA (Figure 5-1). The hydrologic inventory can be formalized in the following equation:

\[
\text{Change in Storage (ΔS) = Inflow – Outflow.}
\]

In the following sections the components of the hydrologic inventory are discussed. The principal sources of inflow are rainfall, streamflow, Supplemental Water, wastewater, groundwater subsurface inflow, and return flow. The principal outflows are groundwater production and subsurface outflow.

5.1. **Rainfall and Percolation Past Root Zone**

Rainfall measurements made during calendar year 2010 range from 17 to 22 inches for water year 2010, and are approximately 130% of the average long-term annual rainfall (see Section 3.1.3 Rainfall). Rainfall on the NMMA infiltrates the soil surface and is either stored in the soil profile until it is evaporated or transpired by overlying vegetation, or percolates downward into shallow or deep aquifers. Rainfall on hardscape surfaces flows to local depressions where infiltration occurs. Locally rainfall may generate runoff from the NMMA to places adjacent to the NMMA boundary; however the amount of runoff out of the NMMA is negligible. The TG has estimated the portion of rainfall that percolates past the root zone is 6,620 AF in water year 2010.
5.2. Streamflow and Surface Runoff

Streamflow and surface runoff are the volumes of water that flow into and out of the NMMA through surface water channels or as overland flow. Streamflow includes water within the Los Berros Creek, Nipomo Creek, and Black Lake Creek (Figure 5-2). Surface runoff occurs during major rainfall events and could occur in locations where local conditions near the NMMA boundary are sufficient to promote overland flow out of the area, and where shallow subsurface flow contributes to streamflow that is conveyed out of the NMMA, or to coastal dune lakes where it evaporates. This may occur in the following areas (Figure 5-2):

- Los Berros Creek streamflow in to and out of the NMMA,
- Nipomo Creek streamflow in to and out of NMMA.
- Black Lake Canyon streamflow out of the NMMA,
- Surface runoff from steep bluffs adjacent to Arroyo Grande Valley,
- Surface runoff from steep bluffs adjacent to Santa Maria River Valley.

The volume of streamflow which enters and leaves the NMMA is not well understood. The TG continues to analyze where it might be appropriate to install temporary or permanent stream gauging sites to determine the volume of water that percolates beneath streams in the NMMA.

5.3. Groundwater Production

The groundwater production component of the Hydrologic Inventory is calculated using metered production records where available and estimated from land use data where measurements are unavailable. The calendar year 2010 groundwater production is approximately 10,950 AF (See Section 4.2.2 Current Demand).

5.4. Groundwater Subsurface Flow

The groundwater subsurface flow is the volume of water that flows into and out of the NMMA groundwater system. Typical methods used to estimate subsurface flow is Darcy’s equation (using hydraulic conductivity, groundwater gradient, and aquifer thickness) or flow equations that are part of a regional groundwater model. In the NMMA, the three areas with the most potential for subsurface flow are at the northwestern boundary with the Northern Cities MA, the southern boundary with the Santa Maria Valley MA, and the seaward edge of the basin. Contours of groundwater elevations in this report (See Section 6.1.4 Groundwater Gradients) suggest that there is net inflow from the Santa Maria Valley MA, net outflow at the coast (required to prevent seawater intrusion), and something approaching no subsurface flow into or out of the Northern Cities MA. The amount of inflow across the eastern boundary is not well understood.

The nature and extent of the confining layer(s) beneath the NMMA and the extent that faults in the NMMA may act as barriers to subsurface flow are not well understood. The TG has not yet quantified the subsurface flows; however, the TG is currently evaluating detailed hydrogeologic cross-sections along portions of the NMMA boundary necessary to make estimates of subsurface flow (See Section 9 Recommendations).
5.5. **Supplemental Water**

Supplemental water is the volume of water produced outside the NMMA and delivered to the NMMA. There was no supplemental water delivered to the NMMA in calendar year 2010. Future deliveries of supplemental water will be measured and subsequent annual reports will present the volume and disposition of the supplemental water delivered to the NMMA.

5.6. **Wastewater**

Wastewater discharges are the volumes of wastewater effluent discharged by the five wastewater treatment facilities located within the NMMA, and individual septic tanks where centralized sewer service is not provided. The WWTFs include the Southland Wastewater Works (Southland WWTF), the Blacklake Reclamation Facility (Blacklake WWTF), Rural Water Company’s Cypress Ridge Wastewater Facility (Cypress Ridge WWTF), the Woodlands Mutual Water Company Wastewater Reclamation Facility (Woodlands WWTF), and La Serena (GSWC). The Southland WWTF discharges treated wastewater into infiltration basins (See Section 3.1.10 Wastewater Discharge and Reuse). A portion of the water percolates and returns to the groundwater system and the remaining portion evaporates. The estimated percolation from Southland WWTF is 474 AF during calendar year 2010. The treated effluent from Blacklake WWTF (70 AF), Cypress Ridge WWTF (47 AF), and Woodlands WWTF (39 AF) is used to irrigate golf course landscaping, reducing the demand for groundwater production. La Serena discharged 6 AF in calendar year 2010. The total WWTF effluent in the NMMA was 640 AF for calendar year 2010 (Table 3-7). The wastewater discharged in septic systems percolates downward and may recharge the Shallow Aquifers, the Deep Aquifers, or become shallow subsurface flow outside the NMMA. The estimated amount of return flow from indoor use by rural residences is 180 AF.

5.7. **Return Flow of Applied Water and Consumptive Use**

Return flow is defined as the amount of recharge to the aquifer resulting from water applied for beneficial use; it is the amount of water that percolates past the root zone to recharge the aquifer(s). It accounts for evaporation, transpiration, and changes to soil storage. This functional definition differs somewhat from that used in the Stipulation to apportion the right to use water that was imported to the basin. However, the physical process of recharge by return flow of applied water is the same regardless of where the water originated.

The TG currently assumes that with the exception of NCSD, Woodlands, GSWC, ConocoPhillips, and RWC, all other groundwater produced for outdoor use is attributable to sustaining plant life and replenishing soil profile storage, and that only rainfall generates percolation. Rural residences produce groundwater for indoor use in addition to outdoor use. The estimated amount of return flow from indoor use by rural residences is 180 AF. The estimated amount of return from urban outdoor use is 44 percent of water supplied by NCSD, Woodlands, GSWC, and RWC. The total amount of return flow from outdoor water use supplied by purveyors is 2,200 AF. No return flow occurs from ConocoPhillips’ groundwater production. The estimated total return flow is 2,380 AF.

The estimated consumptive use of water, computed by subtracting the return flow from the groundwater production, is 8,570 AF.
5.8. **Change in Groundwater Storage**

The change in groundwater storage from the hydrologic inventory reflects the difference between inflow and outflow for a period of time. Typically, this change in storage is compared to a change in storage computed from groundwater contours, cross-checking the results of each. Storage changes from groundwater contours are typically calculated by measuring change in groundwater elevation and multiplying that change by a storage factor. The TG’s current understanding of confining conditions within the NMMA precludes calculating change in groundwater storage from groundwater contours at this time for the management area.
Figure 5-1. Schematic of the Hydrologic Inventory
6. **Groundwater Conditions**

Groundwater conditions are principally characterized by measurements of groundwater elevations and groundwater quality, and interpretations such as groundwater elevation contours, groundwater gradients, and historical trends in elevations and water quality.

6.1. **Groundwater Elevations**

Groundwater elevations are analyzed using several methods. Hydrographs (graphs of groundwater elevation through time) for wells within and adjacent to the NMMA were updated through calendar year 2010. Hydrographs were constructed for a number of wells, particularly all the Key Wells. The Key Wells generally represent principal production aquifers in the inland area. In coastal monitoring wells, groundwater elevations were graphed for each well completion within a nested site to compare to sea level. Finally, the aggregate of groundwater elevation measurements was used to construct groundwater contour maps for the spring and fall of 2010.
6.1.1. Results from Inland Key Wells

Hydrographs were prepared for the Key Wells (Figure 6-1, Figure 6-2). Groundwater elevations in 2010 were above sea level in all Key Wells, though the trend in groundwater elevations varies. Groundwater elevations in the South-East and North-West portions of the NMMA have generally declined since about 2000 (Figure 6-1 and Figure 6-2). In contrast, groundwater elevations in the South-East portion of the NMMA increased over the last two to three years (Figure 6-1). Groundwater elevations are generally within their historical range, although groundwater elevations in the North-West portion of the NMMA will likely reach new historical lows in the next several years if declining trends continue (Figure 6-2).

6.1.2. Results from Coastal Monitoring Wells

The elevation of groundwater in the coastal monitoring wells is very important because it indicates whether there is an onshore or offshore gradient to the ocean. In both coastal monitoring sites adjacent to the NMMA, groundwater elevations are above the criteria that defines the Potentially Severe Water Shortage Conditions (Figure 6-3, Figure 6-4). In spring 2010, the deeper well at site 12C had heads that were at ground surface. At site 36L groundwater elevations were slightly higher in calendar year 2010 than in 2009.

6.1.3. Groundwater Contours and Pumping Depressions

Groundwater elevation data for the Deep Aquifer were plotted on two separate maps for Spring and Fall of 2010 and hand-contoured. Groundwater elevation contours were constructed for both Spring and Fall of 2010 so that high and low groundwater conditions could be analyzed (Figure 6-5, Figure 6-6).

The most obvious features in the contour maps are the pumping depression that has existed for decades within the north-central portion of the NMMA and an apparent Fall 2010 pumping depression just to the north of the NMMA. The low point in the north-central depression was ten feet or so above sea level in Spring 2010 and slightly below sea level in Fall 2010. The pumping depression trends in a northwest-southeast direction, parallel to the Santa Maria River and Oceano faults. DWR (2002) suggested that the Santa Maria River fault affected flow in the Deep Aquifer, with groundwater elevation contours offset by several tens of feet. However, the more-extensive groundwater elevation data set used in this Annual Report could not support this conclusion – the data are too variable from well to well in the eastern portion of the NMMA to detect offset of groundwater contours in the range of tens of feet.

Of interest is the area along the northwesterly boundary of the NMMA, adjacent to the Northern Cities Management Area (NCMA). There continues to be a low-relief “saddle” between the NMMA and the NCMA to the north where groundwater elevations are a few feet higher near the boundary between the Management Areas. Fall 2010 groundwater elevation contours from the NCMA 2010 Annual Report were used within the area of the NCMA adjacent to the NMMA, except in the apparent pumping depression just to the north of the NMMA. The contours presented in this report partially reflect the groundwater elevations that were measured at several tens of feet below sea level in this depression. It should also be noted that this report does not extend groundwater elevation contours to the east and southeast along Los Berros Creek because of the presence of a bedrock outcrop and the uncertainty in the hydrologic connection between shallow alluvial sediments along Los Berros Creek and the Deep Aquifer in the main portion of the basin.

Near the coastline, groundwater elevations within the NMMA are above sea level. As in earlier years, there is a ridge of higher hydraulic head in the aquifer (groundwater elevations 10 to 20 ft above
sea level) between coastal areas of the NMMA and the pumping depression in the north-central portion of the NMMA. The highest elevation along the ridge is coincident with the Black Lake Canyon and down hydraulic gradient from where the Oceano Fault crosses Black Lake Canyon. The persistence of this hydrologic feature is of interest to the TG and further investigations regarding a local recharge zone are being considered.

The groundwater contours along the eastern portion of the NMMA are sub-parallel to the eastern NMMA boundary indicating flow southwest into the NMMA, suggesting that recharge may occur in this area. Besides the possibility of recharge from rainfall and seepage from adjacent older sediments along and to the east of the edge of the NMMA, Los Berros Creek flows across the shallow alluvium, which suggests local recharge may occur.

6.1.4. Groundwater Gradients

Groundwater gradients can be calculated directly from the groundwater elevation contour maps (Figure 6-5, Figure 6-6). The discussion of gradients is separated into coastal gradients that could affect potential seawater intrusion and gradients to/from adjacent management areas.

Coastal Gradients

In the coastal portions of the NMMA, there was an offshore gradient in both spring and fall of 2010 in the NMMA. This offshore gradient extends two to three miles inland, where it reverses to a landward gradient. The groundwater ridge between these opposing gradients is a transient feature formed because of the inland pumping depression. Continued pumping at current rates in the depression could result in the elimination of the groundwater ridge, replaced by a landward gradient from the coastal monitoring wells all the way to the inland groundwater depression. If this were to occur, the current protection from possible seawater intrusion provided by the seaward groundwater gradient would be lost.

Gradients to/from Adjacent Management Areas

As discussed earlier in this section, the groundwater gradient between the NMMA and the Northern Cities Management Area consists of a saddle or divide in the groundwater elevations that separate the two management areas. The groundwater elevations near the divide are in the range of several feet higher than adjacent areas. There is likely little flow of groundwater across this divide. There is, however, a groundwater gradient from the NMMA to the NCMA, both in Los Berros Creek Valley and at the groundwater ridge discussed in the Coastal Gradients section.

The northwest groundwater gradient along the southern boundary of the NMMA creates flow into the NMMA along much of the length of the Santa Maria River in that area (Figure 6-5, Figure 6-6). This northwest gradient is limited to the area between the river and the NMMA boundary – it does not extend into the Santa Maria Valley on the south side of the river. Thus, the groundwater elevation beneath the river forms an effective boundary where groundwater flows toward the NMMA north of the river and into the main Santa Maria basin south of the river. This pattern of gradients suggests that the Santa Maria River is a source of supply to both management areas. If the Deep Aquifer is considered to be confined in the area between the river and the NMMA boundary, then recharge from the river to the aquifer must be largely occurring up-gradient in places where no confining conditions exist.

6.2. Groundwater Quality

Water quality is a concern for all groundwater producers, although the specific concerns vary by water use. Water quality is somewhat different in different portions of the NMMA because:
the source of recharge varies for different portions of the aquifer system,
- groundwater can develop different mineral signatures from the rock it flows through, and
- percolation of surface water mobilizes constituents of concern and carries these into the aquifers.

Water quality conditions in the NMMA during calendar year 2010 were relatively unchanged from 2009. However, new sources of water quality data were added for shallow aquifers in calendar year 2010, providing a better view of shallow groundwater resources in direct hydraulic connection with land surface. The following sections describe coastal water quality and inland water quality conditions.

6.2.1. Results of Coastal Water Quality Monitoring

Quarterly coastal water quality monitoring within the NMMA boundary is currently limited to a single group of monitoring intervals at well 11N/36W-12C1, 2, 3, but the TG is also aware of published data for coastal water quality conditions in the NCMA. Limited historical water quality data are also available for other coastal monitoring wells to either side of the NMMA. Most chloride concentrations in the coastal wells are less than 100 mg/L, and do not show evidence of significant change over time (Figure 6-7; Figure 6-8).

During 2009, high chloride concentrations were observed in the NCMA coastal wells approximately 2 miles from the NMMA boundary; however, the chloride concentrations have generally improved over calendar year 2010 (NCMA, 2010).

In addition, a TDS concentration of 1,000 mg/l was recorded for one of the Deep Aquifer sampling horizons at the coastal monitoring well 12C, but this portion of the aquifer has produced TDS at least as high at different times since 1976. Typically concentration are between 800 and 1,100 mg/l TDS for all three monitored intervals of this well.

6.2.2. Results of Inland Water Quality Monitoring

Water quality from inland wells is variable, both between wells (with similar groundwater elevations) and over time within a single well. Neither chloride nor total dissolved solids concentrations have experienced large temporal changes in samples from inland wells. Nitrate concentrations are locally observed above the drinking water standard of 45 mg/L, including two domestic water supply wells and a number of shallow groundwater monitoring sites.

Nitrate: Elevated nitrate concentrations in groundwater can be a natural phenomenon, but generally result from the recharge by return flows of water applied to fertilized areas, or industrial or septic/waste water plant discharges. Nitrate is principally a potable water concern (as compared to a concern for irrigation water), with a primary drinking water standard of 45 mg/L (nitrate as NO₃, which is used throughout this report).

In calendar year 2010, nitrate concentrations in the principal aquifer were generally well within drinking water standards, except for impacted water supply wells in the south-central portion of the NMMA, and in the Cypress Ridge region. In both impacted locations, nitrate concentrations exceeded the drinking water MCL for nitrate. Persistently high and rising NO₃ concentrations in both these locations are of concern. Shallow groundwater quality is also locally high in nitrate, resulting from various land uses, and demarcated by local concentrations many times higher than the MCL. Shallow nitrate contamination is documented near Oso Flaco (in the SMVMA to the south), Cienega Valley (in the NCMA to the north), and NMMA monitoring sites near wastewater and industrial facilities. Shallow
nitrate contamination is of special concern where it occurs in direct hydraulic connection with the principal production aquifer and related aquifers.

Chloride: The primary concern for both drinking water and irrigation use is potential high chloride concentrations. Depending upon the crop, chloride concentrations well below the drinking water standard of 500 mg/L can cause leaf burn, plant stunting, and plant death. Elevated chloride concentrations can occur in groundwater from the recharge by return flows of water applied to overlying land uses, tidal waters, and shallow lakes, especially in unconfined aquifers.

In calendar year 2010, chloride concentrations were largely unchanged from the previous year, with 120 mg/l chloride or less for all groundwater samples obtained from the Deep Aquifer in the NMMA. Shallow wells associated with industrial and wastewater facilities have the highest chloride concentrations, but the concentrations are below the water quality standards.

Total Dissolved Solids (TDS): In calendar year 2010, TDS concentrations were similar to 2009 results. Based on limited sampling in calendar year 2010, most Deep Aquifer production wells contained TDS below 800 mg/L, with somewhat higher concentrations in coastal locations; this condition is similar to previous years. Groundwater samples from several shallow wells contained total dissolved solids at or above the 1,000 mg/L California recommended secondary standard for TDS. The NMMA TG will continue to monitor the water quality of these wells.

Hydrocarbons. Several local sites of known or potential soil and shallow groundwater contamination are described by environment assessments or ongoing remediation and monitoring activity at sites within the NMMA. These sites are associated with an oil pipeline along Nipomo Creek, an old oily waste disposal site and a gas station, all in the eastern portion of the NMMA. The sites are in various stages of assessment or corrective action and are regulated by the RWQCB or other state agencies. Four sites are currently undergoing study or remedial action in the NMMA (see Table 6-1 below).

<table>
<thead>
<tr>
<th>Site Name</th>
<th>Address</th>
<th>Status</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chevron Station 9-5867</td>
<td>460 West Tefft St</td>
<td>Open; Site</td>
<td>Leaking underground tank site. In 1998, a release of gasoline was discovered impacting soil.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Assessment</td>
<td></td>
</tr>
<tr>
<td>Gibbs Int'l Truck Center</td>
<td>375 N. Frontage Road</td>
<td>Verification</td>
<td>Potential impacts to soil and shallow groundwater from discharge of waste oils and motor/hydraulic/lubricating fluids. No impacts detected; site closed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>monitoring</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>complete; Site</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>closed in 2010</td>
<td></td>
</tr>
<tr>
<td>Nipomo Creek Pipeline, Line 300</td>
<td>671 Oakglen Ave</td>
<td>Open; Site</td>
<td>Petroleum hydrocarbon impacted soil and shallow groundwater adjacent to petroleum pipeline at two sites approximately ½ mile apart. Corrective Action Plan approved in 2010.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Assessment</td>
<td></td>
</tr>
<tr>
<td>ConocoPhillips, Line 300</td>
<td>Tefft St at Carillo St intersection</td>
<td>Open; Site</td>
<td>Petroleum hydrocarbon impacts to soil and shallow groundwater adjacent to two petroleum pipelines (ConocoPhillips & Unocal). Site investigations ongoing in 2010.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Assessment</td>
<td></td>
</tr>
<tr>
<td>ConocoPhillips Refinery, Santa Maria Facility</td>
<td>2555 Willow Rd</td>
<td>Open; Site</td>
<td>Case opened in 1999 to investigate potential soil and shallow groundwater impacts from a coke pile area. Groundwater monitoring ongoing in 2010.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Assessment</td>
<td></td>
</tr>
</tbody>
</table>

Source: http://geotracker.swrcb.ca.gov
Figure 6-1. Key Wells Hydrographs, South-East Portion of NMMA, note: Lines between data values are included to track the sequence of points and do not represent measurements.
Figure 6-2. Key Wells Hydrographs, North-West Portion of NMMA
Figure 6-3. Hydrograph for Coastal Monitoring Well Clusters 11N/36W-12C, note: Water levels measured under artesian flow prior to 2008 were observed without measuring the hydraulic head and recorded as a default value of 2 feet above the casing.
Figure 6-4. Hydrograph for Coastal Monitoring Well Clusters 12N/36W-36L.
Figure 6-5. 2010 Spring Groundwater Contours.
Figure 6-6. 2010 Fall Groundwater Contours.
Figure 6-7. Chloride in Coastal Well 11N/36W-12C.
7. Analyses of Water Conditions

Current groundwater conditions, water shortage conditions, and long-term trends are presented in the following sections, with emphasis on the primary areas of concern.

7.1. Analyses of Current Conditions

7.1.1. Groundwater Conditions

The primary areas of focus in evaluating the conditions of groundwater within the NMMA are: 1) groundwater elevations and water chemistry of coastal monitoring wells, 2) the coastal groundwater gradient, 3) the overall groundwater elevations within the NMMA as measured by the Key Wells Index, and 4) the extent of the pumping depression.

Coastal Monitoring Wells – Both groundwater elevations and chloride concentrations in the coastal well cluster within the NMMA have been stable for some years. However, groundwater elevations in the coastal well cluster 36L have declined the last decade (Figure 6-4).

Coastal Groundwater Gradient – There is currently a westward component of flow toward the ocean beneath the coastal dunes, separated from the inland groundwater depression by a transient
groundwater divide (See Section 6.1.4 Groundwater Gradients). If the inland groundwater depression continues to expand, a landward gradient from the coastal monitoring wells to the inland groundwater depression may develop. In Spring and Fall 2010, the coastal gradient near Black Lake was towards the offshore with a slight northward component of flow that is more pronounced in the fall.

Key Wells Index – The Key Wells Index indicates trends in groundwater elevations within inland areas of the NMMA, and is intended to reflect whether there is a general balance between inflows and outflows in the NMMA. Groundwater elevations in several of the wells that make up the Key Wells Index have generally declined since about 2000, whereas groundwater elevations in some of these wells have increased over the past two to three years (see Section 6.1.1 Results from Inland Key Wells). Overall, the Key Wells Index increased only slightly in 2010, even though rainfall was 130% of long-term average conditions. The 2010 Key Wells Index value remains below the threshold criterion for Potentially Severe conditions (Figure 7-2).

Pumping Depression – The groundwater depression within the inland portion of the NMMA was evident in both Spring and Fall 2010 groundwater elevation contours (Figure 6-5, Figure 6-6). This depression creates a transient groundwater divide between both coastal areas and the Northern Cities Management Area. If this groundwater depression widens to the west or lengthens to the north, the groundwater divide may be breached, allowing groundwater flow from coastal areas to the groundwater depression. This potential reversal of groundwater gradients could create conditions for seawater intrusion. Thus, the TG will carefully research it for future reports in cooperation with the Northern Cities TG.

The other effect of the groundwater depression could be compaction and dewatering of fine-grained sediments within and adjacent to the aquifers of the NMMA, with subsequent land subsidence. There is currently no evidence of land subsidence within the NMMA, although small amounts of subsidence might go undetected. During dewatering and compaction, it is typically the finer grained sediments that are most impacted rather than the main water-producing horizons.

7.1.2. **Hydrologic Inventory**

Although the hydrologic inventory cannot be used directly to calculate the potential imbalance between inflow and outflow for calendar year 2010, there are a number of observed conditions that indicate that outflow exceeds the ability of the inflow to replace this water pumped from the aquifers. These indicators include: 1) continuing deepening of the pumping depression in the NMMA, a portion of which is below sea level; 2) a limited component of seaward flow at the coast; 3) a flattening of the groundwater ridge between coastal and inland wells that protects inland areas from potential seawater intrusion; and 4) a threat on the north by the occurrence of seawater intrusion in the Deep Aquifer.

7.2. **Water Shortage Conditions**

The Stipulation requires the determination of the water shortage condition as part of the Annual Report. Water shortage conditions are characterized by criteria designed to reflect that groundwater levels beneath the NMMA as a whole are at a point at which a response would be triggered to avoid further declines in groundwater levels (Potentially Severe), and to declare that the lowest historic groundwater levels beneath the NMMA as a whole have been reached or that conditions constituting seawater intrusion have been reached (Severe). Potentially Severe Water Shortage Conditions exist in calendar year 2010.

Potentially Severe Water Shortage Conditions
The Stipulation, page 25, defines Potentially Severe Water Conditions as follows:

Caution trigger point (Potentially Severe Water Shortage Conditions)

(a) Characteristics. The NMMA Technical Group shall develop criteria for declaring the existence of Potentially Severe Water Shortage Conditions. These criteria shall be approved by the Court and entered as a modification to this Stipulation or the judgment to be entered based upon this Stipulation. Such criteria shall be designed to reflect that water levels beneath the NMMA as a whole are at a point at which voluntary conservation measures, augmentation of supply, or other steps may be desirable or necessary to avoid further declines in water levels.

Severe Water Shortage Conditions

The Stipulation, page 25, defines Severe Water Conditions as follows:

Mandatory action trigger point (Severe Water Shortage Conditions)

(a) Characteristics. The NMMA Technical Group shall develop the criteria for declaring that the lowest historic water levels beneath the NMMA as a whole have been reached or that conditions constituting seawater intrusion have been reached. These criteria shall be approved by the Court and entered as a modification to this Stipulation or the judgment to be entered based upon this Stipulation.

7.2.1. Coastal Criteria

All coastal groundwater elevation and water quality criteria for Water Shortage Conditions are at acceptable levels (Table 7-1). However, coastal well 36L2 (Figure 7-1), perforated between 535 feet and 545 feet below ground surface, had a Fall 2010 groundwater elevation of 6.5 feet mean sea level ("ft msl"). It is the Spring 2010 measurement on which the Water Shortage Conditions are based; the Spring 2010 measurement was 14.9 ft msl, above the Potentially Severe criterion of 9 ft msl. The Fall 2010 groundwater elevations in the 36L2 well were previously below 9 ft msl during the droughts of the late 1970s and the early 1990s.

Table 7-1. Criteria for Potentially Severe Water Shortage Conditions

<table>
<thead>
<tr>
<th>Well</th>
<th>Perforations Elevations (ft msl)</th>
<th>Aquifer</th>
<th>Spring 2010 Elevations (ft msl)</th>
<th>Elevation Criteria (ft msl)</th>
<th>2010 Highest Chloride (mg/L)</th>
<th>Chloride Concentration Criteria (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11N/36W-12C1</td>
<td>-261 to -271</td>
<td>Paso Robles</td>
<td>10.7</td>
<td>5.0</td>
<td>73</td>
<td>250</td>
</tr>
<tr>
<td>11N/36W-12C2</td>
<td>-431 to -441</td>
<td>Pismo</td>
<td>17.9</td>
<td>5.5</td>
<td>55</td>
<td>250</td>
</tr>
<tr>
<td>11N/36W-12C3</td>
<td>-701 to -711</td>
<td>Pismo</td>
<td>21.6</td>
<td>9.0</td>
<td>99</td>
<td>250</td>
</tr>
<tr>
<td>12N/36W-36L1</td>
<td>-200 to -210</td>
<td>Paso Robles</td>
<td>8.2</td>
<td>3.5</td>
<td>42</td>
<td>250</td>
</tr>
<tr>
<td>12N/36W-36L2</td>
<td>-508 to -518</td>
<td>Pismo</td>
<td>14.9</td>
<td>9.0</td>
<td>100</td>
<td>250</td>
</tr>
</tbody>
</table>

Inland Criteria

The inland criteria for Water Shortage Conditions use the Key Wells Index as a basis. The Spring 2010 Key Wells Index was 29.3 ft msl, at a lower elevation than the criterion for Potentially Severe Water
Shortage Conditions of 31.5 ft msl, and fractionally greater than the Key Wells Index for 2009 (Figure 7-2).

Status of Water Shortage Conditions

The Key Wells Index went below the elevation criterion for Potentially Severe Water Shortage Conditions with the Spring 2008 water level measurements, and has remained so through to Spring 2010. Exiting the Potentially Severe Water Shortage Conditions requires two consecutive years where the Key Wells Index is above the level of Potentially Severe Water Shortage Condition.

The responses required by the Stipulation are set forth as follows:

\[VI(D)(1b) \] Responses [Potentially Severe]. If the NMMA Technical Group determines that Potentially Severe Water Shortage Conditions have been reached, the Stipulating Parties shall coordinate their efforts to implement voluntary conservation measures, adopt programs to increase the supply of Nipomo Supplemental Water if available, use within the NMMA other sources of Developed Water or New Developed Water, or implement other measures to reduce Groundwater use.

\[VI(A)(5) \] ...In the event that Potentially Severe Water Shortage Conditions or Severe Water Shortage Conditions are triggered as referenced in Paragraph VI(D) before Nipomo Supplemental Water is used in the NMMA, NCSD, [GSWC]. Woodlands and RWC agree to develop a well management plan that is acceptable to the NMMA Technical Group, and which may include such steps as imposing conservation measures, seeking sources of supplemental water to serve new customers, and declaring or obtaining approval to declare a moratorium on the granting of further intent to serve or will serve letters.

Nipomo Mesa groundwater management options to address water shortage conditions include responses required under the Stipulation as well as other possible groundwater management actions to address a range of resource concerns associated with the current Potentially Severe Water Shortage Condition. TG concerns directly relating to groundwater conditions include:

- Depressed groundwater elevations, both as measured by the Key Wells Index and in specific portions of the management area;
- Very limited offshore gradient for a large area of the coastal and central portions of the NMMA;
- Very limited gradient separating the management area with the coastal area of seawater intrusion to the north.

Potential actions to address the above concerns include a range of projects and activities already in place, in progress, or contemplated for future consideration. Many of these possibilities have been reviewed previously in water supply evaluations (SAIC, 2006; Kennedy-Jenks, 2001; Bookman-Edmonston, 1994).

Existing Actions in the NMMA reviewed by the TG include

- Adoption in calendar year 2010 of a purveyor Well Management Plan, which includes conservation, public outreach, and facilities upgrades to allow greater distribution of pumping stresses away from areas of concern (see Section 1.1.6 Well Management Plan)
- Continued progress in 2010 on a supplemental water project (see Section 1.1.7 Supplemental Water)
Potential actions to be reviewed by the TG include

- Increased development of reclaimed water for certain NMMA water supply needs in lieu of pumping from the Deep Aquifer.

Different management options have different potential capacity to reduce demand or increase supply, and each has its own technical considerations. By way of example and assuming regulatory agency approval and the establishment of an appropriate cost benefit that meets the requirements of Prop 218 or the PUC, wastewater effluent that is not already reclaimed may be discharged in locations where wastewater effluent would have a beneficial effect on the deep aquifer and in areas closer to the coast.

Areas of special concern with regard to potential shortage conditions have special significance if they experience beneficial results from projects to manage groundwater demands and overall supply. For example, the coastal portion of the NMMA has a limited component of seaward flow, and is threatened on the north by the occurrence of seawater intrusion in the Deep Aquifer there. Actions that maintain a healthy oceanward component of flow protect the basin from potential seawater intrusion. Similarly, the pumping depression in the central portion of the NMMA has transient groundwater levels below sea level and is a pronounced feature of the main producing aquifer in the NMMA (see Figures 6-5 and 6-6). Allowing water levels to rebound in this area would also help to maintain protective groundwater gradients.

7.3. **Long-term Trends**

Long-term trends in climate, land use, and water use are presented in the following sections.

7.3.1. **Climatological Trends**

Climatological trends have been identified through the use of cumulative departure from mean analyses. A cumulative departure from the mean represents the accumulation, since the beginning of the period of record, of the differences (departures) in annual total rainfall volume from the mean value for the period of record. Each year’s departure is added to or subtracted from the previous year’s cumulative total, depending on whether that year’s departure was above or below the mean annual rainfall depth. When the slope of the cumulative departure from the mean is negative (i.e. downward), the sequence of years is drier than the mean, and conversely when the slope of the cumulative departure from the mean is positive (i.e. upward), the sequence of years is wetter than the mean. The cumulative departures from the mean were computed for the rainfall station Mehlschau (38), the longest rainfall record for the NMMA (Figure 7-3).

Historical rainfall records for the Nipomo Mesa begin in 1920. There are three significant long-term dry periods in the record, from 1921 to 1934, from 1944 to 1951, and from 1984 to 1991. Long-term dry periods have occurred in the last 90 years that are longer in duration than the 1987 to 1992 drought (Figure 7-3). Between each large dry period, three wetting periods have occurred. These wetting periods are from 1935 to 1943, from 1977 to 1983, and from 1994 to 2001.

The period of analyses (1975-2010) used by the TG is roughly 11 percent “wetter” on average than the long-term record (1920-2010) indicating a slight bias toward overestimating the amount of local water supply resulting from percolation of rainfall. The past three years (Water Years 2007, 2008, and 2009) have had less than average rainfall. Water Year 2007 was approximately 45 percent to 50 percent of average rain fall, Water Year 2008 was approximately 94 percent to 97 percent of average rain fall, and
Water Year 2009 was approximately 67 percent to 73 percent of average rainfall. For Water Year 2010, rainfall was 20 inches, approximately 130% of average conditions (Table 3-1).

7.3.2. Land Use Trends

The DWR periodically has performed land use surveys of the South Central Coast, which includes the NMMA, in 1958, 1969, 1977, 1985, and 1996. A land use survey for only the NMMA was performed in 2007 based on 2007 aerial photography (See Section 3.1.8 Land Use). Based on these surveys, land use in the NMMA has changed dramatically over the past half-century (Table 7-2, Figure 7-4, Figure 7-5). Urban development has replaced native vegetation at an increasing rate, especially over the past 10 years. Agriculture land use has remained relatively constant (see Section 3.1.8 Land Use).

Table 7-2. NMMA Land Use – 1959 to 2007 (Values in acres)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural</td>
<td>1,600</td>
<td>2,000</td>
<td>2,000</td>
<td>2,200</td>
<td>2,000</td>
<td>2,600</td>
</tr>
<tr>
<td>Urban</td>
<td>300</td>
<td>700</td>
<td>2,200</td>
<td>3,300</td>
<td>5,800</td>
<td>10,200</td>
</tr>
<tr>
<td>Native</td>
<td>19,200</td>
<td>18,400</td>
<td>16,900</td>
<td>15,600</td>
<td>13,300</td>
<td>8,300</td>
</tr>
<tr>
<td>Total</td>
<td>21,100</td>
<td>21,100</td>
<td>21,100</td>
<td>21,100</td>
<td>21,100</td>
<td>21,100</td>
</tr>
</tbody>
</table>

7.3.3. Water Use and Trends in Basin Inflow and Outflow

DWR (2002) estimated the Dependable Yield (DWR, 2002. Page ES21) for their study area to be between 4,800 and 6,000 AF/yr. Their study area is approximately equivalent to the boundary of the Nipomo Mesa Management Area.

The estimated groundwater production is 10,950 AF for calendar year 2010; nearly three times the groundwater production in 1975 (Figure 4-1). The estimated consumptive use of water for urban, agriculture and golf courses, and industrial is 8,570 AF. Contours of groundwater elevations in this report suggest that there is likely inflow from the Santa Maria Valley, outflow at the coast (required to prevent seawater intrusion), and something approaching no subsurface flow into or out of the Northern Cities MA. The net subsurface flow to the NMMA is therefore likely to be positive.
Figure 7-1. Coastal monitoring well cluster 36L. The criterion for Potentially Severe Water Shortage Conditions for well 36L2 indicated by dashed line.
Figure 7-2. Key Wells Index. The upper dashed line is the criterion for Potentially Severe Water Shortage Conditions and the lower dashed line is the criterion for Severe Water Shortage Conditions.

Figure 7-3. Rainfall: Cumulative Departure from the Mean – Rainfall Gauge Mehlschau (38)
Figure 7-4. NMMA Land Use – 1959 to 2007
Figure 7-5. Historical Land Use in the NMMA
8. Other Considerations

8.1. Institutional or Regulatory Challenges to Water Supply

Several types of entities and individual landowners extract water from aquifers underlying the NMMA to meet water demands and no single entity is responsible for the delivery and management of available water supplies. Each entity must act in accordance with the powers and authorities granted under California law.

The powers and authorities the Woodlands Mutual Water Company and Nipomo Community Services District are set forth in the California Water Code. The CPUC regulates Golden State Water Company’s and Rural Water Company. This diversity of the public water purveyors’ powers and the locations of their respective service areas (Figure 1-1) must be taken into account in attempting to develop consistent water management strategies that can be coupled with enforceable measures to ensure timely compliance with recommendations made by the TG, or mandatory Court orders. This is particularly true when there are legal requirements relating to the timing of instigating changes in water rates, implementation of mandatory water conservation practices or forcing a change in pumping patterns which may require one entity to deliver water to a location outside its service area.

A cooperative effort among the purveyors and other parties is the only expedient means to meet these institutional and regulatory challenges relating to the water supply and overall management of the NMMA. The purveyors developed a Well Management Plan (WMP) in calendar year 2010 which outlines steps to take in “potentially severe water shortage conditions” as well as in “severe water shortage conditions”3. The WMP identifies a list of recommended water use restrictions to limit prohibited, nonessential and unauthorized water uses. For each condition, the WMP also identifies both voluntary and mandatory actions such as conservation goals, shifts in pumping patterns, and potential additional use and pumping restrictions. NCSD is developing the engineering design of the Nipomo Supplemental Water Project, which will provide for the delivery of supplemental water within the NMMA.

9. Recommendations

A list of recommendations were developed and published in each of the previous NMMA Annual Reports. The TG will address past and newly developed recommendations along with the implementation schedule based on future budgets, feasibility, and priority. The recommendations are subdivided into three categories: (1) Draft capital and operation expenditure plan, (2) Achievements from earlier NMMA annual report recommendations accomplished in 2010; and (3) Technical Recommendations – to address the needs of the TG for data collection and compilation.

9.1. Funding of Capital and Operating Expenditure Program

The TG acknowledges that the work items and budget presented below represent a consensus view that additional technical work is necessary beyond that covered under the current annual budget

3 See Appendix B- “NMMA Water Shortage Conditions and Response Plan” which defines these conditions.
Completing this broader scope of work will require a formal adjustment to the NMMA TG budget limit. Completing this broader scope of work will require a formal adjustment to the NMMA TG budget limit.

Table 9-1. NMMA 5-Year Cost Analysis

<table>
<thead>
<tr>
<th>Task Description</th>
<th>Total Cost</th>
<th>Targeted Completion Year</th>
<th>Projected 5-year Cash Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>2011</td>
</tr>
<tr>
<td>Yearly Tasks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual report preparation</td>
<td>$50,000</td>
<td>$50,000</td>
<td>$50,000</td>
</tr>
<tr>
<td>Grant funding efforts</td>
<td>$10,000</td>
<td>$10,000</td>
<td>$10,000</td>
</tr>
<tr>
<td>Confining layer definition</td>
<td>$10,000</td>
<td>$10,000</td>
<td>$10,000</td>
</tr>
<tr>
<td>Well head surveying</td>
<td>$3,000</td>
<td>$3,000</td>
<td>$3,000</td>
</tr>
<tr>
<td>Analytical testing</td>
<td>$5,000</td>
<td>$5,000</td>
<td>$5,000</td>
</tr>
<tr>
<td>Long Term Studies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Groundwater model (NMMA share)</td>
<td>$250,000</td>
<td>2015</td>
<td>$33,300</td>
</tr>
<tr>
<td>Capital Projects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oso Flaco monitoring well</td>
<td>$130,000</td>
<td>2013</td>
<td>$43,300</td>
</tr>
<tr>
<td>Automatic monitoring equipment</td>
<td>$25,000</td>
<td>2015</td>
<td>-</td>
</tr>
<tr>
<td>Total Projected Annual Cost</td>
<td></td>
<td></td>
<td>$154,600</td>
</tr>
</tbody>
</table>

9.2. **Achievements from previous NMMA Annual Report Recommendations**

The TG worked diligently to address several of the recommendations outlined in the previous Annual Reports. Major accomplishments and/or progress was accomplished during 2010 on the following:

- Evaluation of an Oso Flaco monitoring well cluster;
- Evaluation of hydrological conditions – refinement of areal extent of the confined aquifer was undertaken. Development of refined cross-sections through key areas of the basin.
- Technical work to establishing methodology and quantifying volume of water percolating beyond the root zone.
- Reviewed and identified existing well locations and recommended additional monitoring to be incorporated into the County water level monitoring program.
- Established sub-committee and met with representatives from NCMA and SMVMA to discuss groundwater modeling possibilities, groundwater monitoring activities, methodology to estimate percolation, and sea water intrusion findings.

9.3. **Technical Recommendations**

The following technical recommendations are not organized in their order of priority because the monitoring parties, considering their own particular funding constraints and authorities, will determine the
implementation strategies and priorities. However, the TG has suggested a priority for some of the technical recommendations.

- **Supplemental Water Supply** – An additional water supply that would allow reduced pumping within the NMMA is likely to be the most effective method of reducing the stress on the aquifer and allow groundwater elevations to recover. The Nipomo Supplemental Water Project (see Section 1.1.7-Supplemental Water) is likely to be the fastest method of obtaining alternative water supplies. Given the Potentially Severe Water Shortage Conditions within the NMMA and the other risk factors discussed in this Report, the TG recommends that this project be implemented as soon as possible.

- **Consumptive Water Demand** -- Technical memo establishing methodology and quantifying consumptive water demand within the NMMA.

- **Well Management Plan** – It is recommended that for calendar year 2011, purveyors compile and present to the TG a Well Management Plan status update.

- **Changes to Monitoring Points or Methods** – The coastal monitoring wells are of great importance in the Monitoring Program. The inability to locate the monitoring well cluster under the sand dunes proximally north of Oso Flaco Lake renders the southwestern coastal portion of the NMMA without adequate coastal monitoring. During 2009 and 2010, the NMMA Technical Group reviewed options for replacing this lost groundwater monitoring site. The TG was given written support of the concept from the State Parks Department to allow replacement of the well, and the TG has also had discussions with San Luis Obispo County, which may be able to provide some financial assistance for the project. The NMMA Technical Group has incorporated replacement of this monitoring well in its long-term capital project planning and will investigate possible State or Federal grants for financial assistance with the construction of this multi-completion monitoring well.

- **County of San Luis Obispo Monitoring Locations** – Review proposed County of San Luis Obispo monitoring well and stream gauge locations.

- **Installation of Groundwater Monitoring Equipment** – When a groundwater level is measured in a well, both the length of time since the measured well is shut off and the effect of nearby pumping wells modify the static water level in the well being measured. For the Key Wells, the installation of transducers and data loggers will largely solve this problem. Installation of transducers is also recommended for purveyors’ wells that pump much of the time.

- **Well Reference Point Elevations** – It is recommended that all the wells used for monitoring have an accurate RP established over time. This could be accomplished by surveying a few wells every year or by working with the other Management Areas and the two counties in the Santa Maria Groundwater Basin to obtain LIDAR data for the region; the accuracy of the LIDAR method allows one-foot contours to be constructed and/or spot elevations to be determined to similar accuracy.

- **Boundary Flow Estimates** - Develop a methodology to potentially provide better estimates of subsurface flow across all boundaries. Continue to monitor the low groundwater elevation saddle between NCMA and the ocean (See Section 6.1.4 Groundwater Gradients).
• **Groundwater Production** – Estimates of total groundwater production are based on a combination of measurements provided freely from some of the parties, and estimates based on land use. The TG recommends developing a method to collect groundwater production data from all stipulating parties. The TG recommends updating the land use classification on an interval commensurate with growth and as is practical with the intention that the interval is more frequent than DWR’s 10 year cycle of land use classification.

• **Increased Collaboration with Agricultural Producers** – To better estimate agricultural groundwater production where data is incomplete, it is recommended that the TG work with a subset of farmers to measure groundwater production. This measured groundwater production can then be used to calibrate models and verify estimates of agricultural groundwater production where data are not available.

• **Hydrogeologic Characteristics of NMMA** - Further defining the continuity of confining conditions within the NMMA remains a topic of investigation by the TG. The locations of unconfined conditions is important – they control to a significant degree both the NMMA groundwater budget as to the quantity of recharge from overlying sources and any calculation of changes in groundwater storage. Further review of well screen intervals, lithology, groundwater level, and other relevant information to segregate wells into the different aquifers groups (e.g. shallow versus deep aquifers) for preparation of groundwater elevation contour maps for different aquifers.

• **Modifications of Water Shortage Conditions Criteria** - The Water Shortage Conditions and Response Plan was finalized in 2008. The TG will review the plan on a regular basis.

• **Groundwater Modeling** - The TG continues to recommend the advancement of a groundwater model as presented in the NMMA 5-yr Cost Analysis. This may include collaboration with the NCMA, the SMVMA or both.
References

California Department of Public Health [DPH], 2009. Water Quality Monitoring Data – electronic product, Drinking Water Program, Department of Public Health, 1616 Capitol Avenue, MS 7416, Sacramento, CA 95814.

Nipomo Mesa Management Area [NMMA]. 2009. 1st Annual Report – Calendar Year 2008 NMMA TG.

University of California, Agriculture and Natural Resources [UCANR], 2009. Avocado information website. Accessed March 2, 2009. \url{http://www.ucavo.ucr.edu/AvocadoWebSite%20folder/AvocadoWebSite/Irrigation/CropCoefficients.html}

Appendices
Appendix A: Monitoring Program
Nipomo Mesa Monitoring Program

Prepared by
Nipomo Mesa Management Area Technical Group

August 2008
Table of Contents

1 INTRODUCTION .. 3
 1.1 Background .. 3
 1.2 Judgment .. 3
 1.3 Technical Group .. 5
 1.4 Objectives Of Monitoring Program ... 6
 1.5 Reporting Requirements ... 6

2 MONITORING PARAMETERS .. 7
 2.1 Groundwater Elevations ... 7
 2.2 Groundwater Quality ... 8
 2.3 Precipitation .. 9
 2.4 Streamflow .. 9
 2.5 Surface Water Quality and Usage ... 9
 2.6 Land and Water Uses Impacting NMMA Water Balance 10
 2.7 Groundwater Pumping (Measured) .. 10
 2.8 Groundwater Pumping (Estimated) ... 10
 2.9 Wastewater Discharge and Reuse ... 11

3 DATA ANALYSIS & WATER SHORTAGE TRIGGERS ... 11
 3.1 Data Analysis .. 11
 3.2 Water Shortage Triggers ... 12

APPENDIX – MONITORING POINTS ... 13
1 INTRODUCTION

1.1 Background

This Monitoring Program is a joint effort of the Nipomo Mesa Management Area ("NMMA") Technical Group ("Technical Group"). The Technical Group was formed pursuant to a requirement contained in the 2005 Stipulation ("Stipulation") for the Santa Maria Basin Adjudication. Sections IV D (All Management Areas) and Section VI (C) (Nipomo Mesa Management Area) contained in the Stipulation were independently adopted by the Court in the Judgment After Trial1 (herein “Judgment”). The Monitoring Program is a key component of the portions of the Judgment that involve the NMMA and forms the basis for subsequent analyses of the basin to be included in Annual Reports for the NMMA.

This Monitoring Program includes a discussion of the various parameters to be monitored within the NMMA, and a discussion of data analysis methods and water shortage triggers. The Monitoring Program provides a permanent foundation for the type of information to be regularly monitored and collected. However, the Technical Group is expected periodically to evaluate and update the Monitoring Program to ensure it provides comprehensive information sufficient to assess the integrity of water resources within the NMMA. For example, the Technical Group may change or expand monitoring points or types of data to be collected and otherwise periodically amend the Monitoring Program. Material amendments will be submitted for court approval.

1.2 Judgment

As a component of the physical solution for the Santa Maria groundwater basin, the Judgment requires the development and implementation of comprehensive monitoring and reporting in each of three Management Areas in the basin – Northern Cities Management Area, Nipomo Mesa Management Area, and Santa Maria Valley Management Area (Figure 1). For each of these Management Areas the Judgment specifies:

“A Monitoring Program shall be established in each of the three Management Areas to collect and analyze data regarding water supply and demand conditions. Data collection and monitoring shall be sufficient to determine land and water uses in the Basin, sources of supply to meet those uses, groundwater conditions including groundwater levels and quality, the amount and dispositions of Developed Water supplies, and the amount and disposition of any sources of water supply in the Basin.

1 The Judgment is dated January 25, 2008 and was entered and served on all parties on February 7, 2008. This Monitoring Program is to be submitted for court approval on or before August 6, 2008.
Within one hundred and eighty days after entry of judgment, representatives of the Monitoring Parties from each Management Area will present to the Court for its approval their proposed Monitoring Program.”

The Judgment also requires the NMMA and the Santa Maria Valley management area technical committees to submit for court approval the criteria that trigger responses to "potentially severe and severe shortage conditions" that are specified in the Judgment.

An additional requirement of the Judgment is an Annual Report:

“Within one hundred and twenty days after each Year, the Management Area Engineers will file an Annual Report with the Court. The Annual Report will summarize the results of the Monitoring Program, changes in groundwater supplies, and any threats to Groundwater supplies. The Annual Report shall also include a tabulation of Management Area water use, including Imported Water availability and use, Return Flow entitlement and use, other Developed Water availability and use, and Groundwater use. Any Stipulating Party may object to the Monitoring Program, the reported results, or the Annual Report by motion.”
Each Management Area Monitoring Plan will provide the basis for the preparation of the annual reports and the data to support the evaluations for the potentially severe and severe water shortage conditions relevant to the NMMA and the Santa Maria Valley management area.

1.3 Technical Group

The NMMA Technical Group is designated as the Monitoring Party for the NMMA.

Membership

The NMMA Technical Group is designated in the Judgment as including representatives appointed by Nipomo Community Services District, Southern California Water Company (now known as Golden State Water Company), ConocoPhillips, Woodlands Mutual Water Company, and an agricultural overlying owner who is also a Party to the Stipulation. The service areas of purveyors in the Technical Group are indicated in Figure 2.

Figure 2. Water purveyors within the NMMA.
Role

The Technical Group is responsible for preparing the Monitoring Program, conducting the Monitoring Program, and preparing the Annual Reports. The Technical Group may hire individuals or consulting firms to assist in the preparation of the Monitoring Program and Annual Reports (the Judgment describes these individuals or consulting firms as the “Management Area Engineer”). The Technical Group has the sole discretion to select, retain, and replace the Management Area Engineer.

To assist the Technical Group in monitoring and analyzing water conditions in the NMMA, Stipulating Parties are required to provide monitoring and other production data at no charge, to the extent that such data have been generated and are readily available. The Technical Group is required to adopt rules and regulations concerning measuring devices that are consistent with the Monitoring Programs of other Management Areas when feasible.

If the Technical Group is unable to agree on any aspect of the Monitoring Program, the matter may be taken to the Court for resolution.

Cost Sharing

The Technical Group functions are to be funded by contribution levels negotiated by Nipomo Community Services District, Golden State Water Company, Rural Water Company, ConocoPhillips, and Woodlands Mutual Water Company. In-lieu contributions through engineering services may be provided, subject to agreement by those parties. The budget of the Technical Group shall not exceed $75,000 per year without prior approval of the Court.

1.4 Objectives Of Monitoring Program

The objectives of the Monitoring Program are to establish appropriate data collection criteria and analytical techniques to be used within the NMMA so that groundwater conditions, changes in groundwater supplies, threats to groundwater supplies, water use, and sources of water can be documented and reported on an annual basis. In addition, data developed through the Monitoring Program will be relied upon to provide the criteria for potentially severe and severe water shortage conditions.

1.5 Reporting Requirements

The Monitoring Program shall be presented for Court approval consistent with the Judgment. The Annual Report shall be submitted to the Court by April 30 of each year (April 29 on leap years).
2 MONITORING PARAMETERS

To satisfy the objectives of the Monitoring Program (section 1.4), data need to be collected from a variety of sources. The data to be collected include:

- Groundwater elevations measured in wells
- Water quality measured in wells
- Precipitation
- Streamflow
- Surface water usage
- Surface water quality
- Land use to the extent differential uses impact the NMMA water budget
- Groundwater pumping (measured)
- Groundwater pumping (estimated)
- Wastewater discharge and reuse amounts and locations

2.1 Groundwater Elevations

The San Luis Obispo County Department of Public Works, the U.S. Geological Survey, the California Department of Water Resources, and some groundwater users within the NMMA periodically gather groundwater elevation data on a large number of wells within the NMMA. Various members of the NMMA Technical Group already maintain these data in digital databases.

Current monitoring of groundwater elevations is conducted primarily by the County of San Luis Obispo, and additionally by Nipomo Community Services District, ConocoPhillips, Woodlands, Golden State Water Company, and Rural Water Company. The Monitoring Program will include compilation of groundwater elevations for a large number (93 initially) of groundwater wells located throughout the NMMA. Typically, groundwater elevations are measured during the fall and spring of each year. The initial list of the wells to be included in the Monitoring Program are shown in the Appendix.

The extensive current monitoring of groundwater elevations within the NMMA is sufficient to provide initial information on groundwater trends. However, there are four additional issues that the Technical Group will consider for further monitoring or analysis over the first years of implementation of the Monitoring Program:
• Additional existing coastal nested monitoring wells will be considered for inclusion in the groundwater elevation monitoring program. These include the 13K2-K6 nested site near Oso Flaco Lake (currently not being monitored) and the 36L1-L2 nested site in the coastal dunes west of Black Lake Canyon (outside the NMMA, currently monitored for groundwater elevations by SLO County).

• The wells used in the Monitoring Program will be investigated as necessary to ensure that the aquifer penetrated by the wells is verified.

• Additional wells may be added as necessary to the Monitoring Program in a phased approach to fill in data gaps recognized during preparation of the Annual Reports.

• The Technical Group may recommend that additional dedicated monitoring well(s) need to be installed at critical locations where no other information is available.

2.2 Groundwater Quality

As an element of compliance with their drinking water reporting responsibilities, public water purveyors within the NMMA have historically gathered and reported groundwater quality data (filed with the California Department of Public Health). In addition, the U.S. Geological Survey, the California Department of Water Resources, and SLO County have also gathered some water quality data within the NMMA. Members of the NMMA Technical Group maintain these data in digital databases.

Of considerable importance is groundwater quality in wells near the ocean, the most likely site where any intrusion of seawater would first be detected. Because there was no current monitoring of groundwater quality in any of the coastal nested monitoring wells, the Monitoring Program will include the following:

• Coastal nested monitoring well site 11N/36W-12C (west of the ConocoPhillips refinery) is now monitored under agreement with SLO County and provides quarterly water quality sampling. Samples are collected for chloride, sulfate, and sodium lab analyses and pH, EC, and temperature are measured in the field.

Regular sampling and analyses of groundwater quality is an important component of the Monitoring Program, because of the potential threat of seawater intrusion at the coastline and potential water quality changes caused by pumping stress in other portions of the NMMA and the basin as a whole. Water quality does not change as rapidly as groundwater elevations, so quality monitoring does not have to be as frequent. With the addition of the coastal nested monitoring data, current water quality monitoring appears to be adequate. However, four aspects of the Monitoring Program will be further evaluated to ensure the ongoing adequacy of the Monitoring Program:
• The Technical Group will arrange to receive water quality monitoring results from purveyors within the NMMA, either directly from the purveyors or annually from the Department of Public Health.

• Coastal nested monitoring well site 12C will be evaluated to determine whether current quarterly sampling can be reduced in frequency (or field testing substituted for laboratory analysis), thus allowing funding for water quality monitoring of additional nested site 13K2-K6 near Oso Flaco Lake (not sampled for three decades) and the 36L1-L2 nested site in the coastal dunes west of Black Lake Canyon (last sampled 12 years ago).

• Each well used for monitoring of groundwater elevations will be tested once for general minerals (if such testing is not already conducted) as budgeting allows. This testing will help further define particular aquifer characteristics.

• A water quality monitoring contingency plan will be developed in the event that there are indications of seawater intrusion in coastal monitoring wells. This contingency plan will consider triggers for increased sampling, both in frequency and in added analytes (e.g., iodide, strontium, boron, oxygen/hydrogen isotopes).

2.3 Precipitation

There is a wide choice of existing precipitation stations that can be used to estimate rainfall within the NMMA. Two gauges are part of the ALERT Storm Watch System, Nipomo East (728) and Nipomo South (730). Other gauges include Simas (201.1), Black Lake (222), Runels Ranch (42.1), Oceano Wastewater Plant (194), Nipomo Mesa (152.1), Peny Ranch (175.1), Mehlschau (38), NCSD Shop (223), Nipomo CDF (151.1), and CIMIS Nipomo #202 Station. As part of the analysis for the Annual Reports, data from an appropriate subset of these gauges will be used to estimate precipitation each year.

2.4 Streamflow

Streamflow can be important both as an input and an output of the water balance for an area. Currently, streamflow within the NMMA is partially gauged. The Los Berros Creek gauge (Sensor 757) is located 0.8 miles downstream from Adobe Creek and 3.7 miles north of Nipomo on Los Berros Road. This station is located approximately where Los Berros Creek conveys water out of the NMMA.

Nipomo Creek is not currently being monitored and is observed to convey water out of the NMMA during some of the year. The Technical Group will consider whether monitoring of Nipomo Creek or any other surface water monitoring is necessary or appropriate.

2.5 Surface Water Quality and Usage

There has been limited surface water monitoring of the dune lake complex and in Black Lake Canyon by the San Luis Obispo Land Conservancy and others. The
Technical Group will evaluate whether this monitoring is sufficient and will obtain this
and any additional related data as necessary and appropriate.

It is not known whether there are surface water diversions within the NMMA. The
Technical Group will investigate this issue and determine whether additional monitoring
is necessary and appropriate.

2.6 Land and Water Uses Impacting NMMA Water Balance

Land uses within the NMMA include agricultural, residential/commercial, and
undeveloped areas. Land use surveys can be useful both in developing an overall water
balance assessment and as an aide to estimate water use when such use is not directly
measured. The most common method of conducting a land use survey is to obtain
current digital aerial photography, classify the land uses, and create GIS mapping of the
various land use classifications. In some cases, field checking is also required to confirm
information obtained from aerial photography.

Where necessary, water use may be established based on the various types of land use
within the NMMA. Information may be obtained from both published data (including
San Luis Obispo County WPA-6) and any information compiled from existing stations
installed in and around the NMMA that monitor climate data (CIMIS). This is described
in greater detail in Section 2.8.

2.7 Groundwater Pumping (Measured)

Individual landowners, public water purveyors, and industry all rely on groundwater
pumping from the NMMA. To the extent users measure their volume of use, these data
will be reported to the Technical Group on an annual basis. Stipulating Parties to the
Judgment are required to provide monitoring and other production data at no charge, to
the extent that such data have been generated and are readily available.

Pursuant to paragraph 5 of the Judgment, the Technical Group retains the right to
seek a Court Order requiring non-stipulating parties to monitor their well production,
maintain records thereof, and make the data available to the Court or the Court’s
designee.

2.8 Groundwater Pumping (Estimated)

Some groundwater users do not measure the volume of their groundwater production,
and thus, this increment of groundwater pumping will have to be estimated each year.
There are several methods of estimating groundwater pumping when totalizing meters are
not installed. For cooperating pumpers, electrical records for pumping can be used, with
the most accuracy obtained when the wells are tested regularly for pump efficiency.

Another method of estimating agricultural pumping is through self-reporting or
surveys of crop type and irrigated acreage. For agriculture, water use can then be
estimated using calculations that include crop water demand, effective precipitation, evapotranspiration, irrigation efficiency, and leaching requirements. An active California Irrigation Management Information System (CIMIS) station is located in the southern portion of the Woodlands within the NMMA and provides a useful reference for Nipomo Mesa evapotranspiration. A second active station is located adjacent to the Sisquoc River, above Tepusquet Creek.

For municipal or mixed rural lands, estimates will be based on acreage and development type. In some urban lands, a “unit water use” can be derived from average water consumption recorded from comparable or historical conditions.

To develop a complete picture of groundwater withdrawals for Nipomo Mesa, the Technical Group will develop methods for estimating unmetered groundwater pumping that will likely include some combination of those discussed above.

2.9 Wastewater Discharge and Reuse

Four wastewater treatment facilities discharge treated effluent within the NMMA and include the following: NCSD’s Southland Wastewater Treatment Facility in the eastern portion of Nipomo Mesa, NCSD’s wastewater treatment plant at Blacklake Village, Cypress Ridge’s wastewater treatment facility, and the Woodland’s wastewater treatment facilities. The Monitoring Program will include an annual compilation of wastewater treatment plant discharges, any reuse of the treated water (quantities and locations), and available water quality parameters.

3 DATA ANALYSIS & WATER SHORTAGE TRIGGERS

The primary purpose of the Monitoring Program is to detect changes in groundwater conditions that indicate current and future water supply problems within the NMMA. Although the determination of methods of data analysis and subsequent triggers that can indicate negative water supply conditions are not elements of the Monitoring Program, initial assessment of these issues are the responsibility of the Technical Group. A short discussion of potential methodologies follows.

3.1 Data Analysis

The focus of data analysis is to help detect and predict whether any conditions exist that could harm the aquifer, either by excessive drawdown or by degrading water quality. In evaluating the Monitoring Program data, the Technical Group will establish methodologies to use monitoring data to define the “health” of the basin. Among the methodologies that the Technical Group will evaluate in developing potentially severe and severe water shortage triggers are:
• Coastal monitoring wells – trends in water quality and groundwater elevations. Establish criteria to recognize both the potential for seawater intrusion and evidence of actual seawater intrusion.

• Coastal groundwater gradient – the direction and magnitude of groundwater flow either towards the ocean or in a landward direction. Establish criteria to recognize conditions that could cause seawater intrusion.

• NMMA-wide groundwater elevation contouring – establish groundwater flow directions, detect areas of increased drawdown, determine how pumping patterns are affecting the basin and the effects of any changes in the location of pumping that may serve to mitigate negative impacts.

• Key wells – indicator wells in key areas that track changes in groundwater elevations and water quality. Establish criteria to determine whether monitored changes could potentially be harmful to the aquifers.

• Groundwater in storage – calculation of changes of groundwater in storage and consideration of changes of groundwater storage over time can be used to analyze trends in the basin hydrologic balance.

3.2 Water Shortage Triggers

The Stipulation requires that water level and water quality criteria are to be established that will trigger responses to potential water shortages (the potentially severe and severe water shortage conditions). The Technical Group will rely on the Monitoring Program data and protocol in establishing the proposed criteria for these triggers. The triggers points will be presented for court approval, as required in the Stipulation, prior to or concurrent with the filing of the first Annual Report in 2009. Annual Reports will include an assessment of basin conditions relative to the proposed trigger points.
APPENDIX – MONITORING POINTS

The monitoring points shown on Figure A-1 and in Table A-1 are the 93 initial wells that the NMMA Technical Group determined would provide information to evaluate the health of the Nipomo Mesa portion of the Santa Maria basin. Many of the wells indicated are currently being monitored (see Table A-1), with the remainder planned to be monitored prior to preparation of the first Annual Report.

As discussed in the main text of this Monitoring Program, wells will be added and/or dropped in subsequent years as the basin is evaluated annually. The addition and/or subtraction of monitoring wells will be based on data gaps, areas of special concern that require more monitoring, and data redundancy. Information from some of the wells listed in Table A-1 that are monitored by the County of San Luis Obispo may not be available because of privacy concerns – this issue will be addressed prior to preparation of the first Annual Report.

Figure A-1. Locations of monitoring points listed in Table A-1.
Appendix B: Water Shortage Conditions and Response Plan
Nipomo Mesa Management Area

Water Shortage Conditions and Response Plan

Nipomo Mesa Management Area
Technical Group

April 2009
The Santa Maria basin was divided into three management areas as a result of the adjudication of the Santa Maria groundwater basin. The June 30, 2005 Stipulation (“Stipulation”), the terms of which are incorporated into the Court's Judgment dated January 25, 2008 (“Judgment”), established the boundaries of the Nipomo Mesa Management Area (“NMMA”), and provided for a technical group (NMMA Technical Group) to oversee management of the NMMA. As part of the Stipulation, the Technical Group was tasked to develop a Monitoring Program that shall include the setting of well elevations and groundwater quality criteria that trigger the responses set forth in Paragraph VI(D) of the Stipulation.

The NMMA Technical Group prepared a Monitoring Program dated August 5, 2008 that was submitted to the Court in accordance with the Judgment. This Water Shortage Conditions and Response Plan is an addendum to the Monitoring Program and completes the Monitoring Program requirements as defined in the Stipulation.

This document is divided into three sections:
 I. Water Shortage Conditions Nipomo Mesa Management Area,
 II. Response Plan for Potentially Severe and Severe Water Shortage Conditions, and
 III. Discussion of Criteria for Potentially Severe and Severe Water Shortage Conditions.

I. Water Shortage Conditions
 Nipomo Mesa Management Area

Water shortage conditions are characterized by criteria designed to reflect that groundwater levels beneath the NMMA as a whole are at a point at which a response would be triggered to avoid further declines in groundwater levels (Potentially Severe), and to declare that the lowest historic groundwater levels beneath the NMMA as a whole have been reached or that conditions constituting seawater intrusion have been reached (Severe).

Groundwater levels beneath the NMMA as a whole impact the cost of pumping, the quality of groundwater pumped, and the overall flow of fresh water to the ocean that balances potential seawater intrusion. Lowering of groundwater levels below certain thresholds is to be curtailed by importing supplemental water, increasing conservation, and decreasing consumptive use of groundwater produced.

The NMMA Technical Group has developed criteria for declaring the existence of Potentially Severe and Severe Water Shortage Conditions. These criteria represent the conditions in both coastal and inland wells, and depend upon measurements of groundwater elevation and groundwater quality.

While this Response Plan relies on quantitative measurements of groundwater levels, the Technical Group acknowledges these measurements are subject to many variables so that
any given measurement may only be accurate within a percentage range; no given measurement is exact or precise. For example, water level measurements obtained from groundwater production wells may be influenced by a range of factors, including but not limited to temperature, the method, protocol, and equipment used to obtain the measurement, the condition of the well, the time allowed for water levels in a previously producing well to equilibrate, and any nearby wells that remain pumping while the measurements are taken. As well, the historic data used as the basis to set action levels for Severe and Potentially Severe Water Shortage Conditions may be influenced by these and other factors. Finally, while there is sufficient historical data to reliably set Severe and Potentially Severe Water Shortage Conditions criteria, as more data is gathered pursuant to the NMMA Monitoring Plan, the Technical Group expects its understanding of NMMA characteristics will become increasingly more sophisticated and accurate. As a result of these considerations, the Technical Group acknowledges and expects that it will recommend modifications to the Severe and Potentially Severe Water Shortage Conditions criteria as more data are obtained on a consistent basis and as the Technical Group's understanding of the NMMA characteristics improves over time.

Seawater intrusion is a condition that could permanently impair the use of the principal producing aquifer to meet water demands of the NMMA. For coastal areas, the criteria described here are set either to indicate conditions that, if allowed to persist, may lead to seawater intrusion or increasing chloride concentrations, or that actual seawater intrusion has occurred.

Monitoring Wells

As with the NMMA Monitoring Plan, primary data for this Water Shortage Conditions and Response Plan is derived from a select group of wells located within the NMMA. Identification of these wells and the selection criteria are as follows.

Coastal sentinel wells, installed by the Department of Water Resources in the 1960s, are monitored to characterize any condition for the advancement of seawater into the freshwater aquifer. Specifically, the groundwater elevation and concentration of indicator constituents are evaluated to determine the threat or presence of seawater intrusion to the fresh water aquifer. These coastal monitoring wells are as follows:
Coastal Well Elevations and Aquifer Assignments

<table>
<thead>
<tr>
<th>Coastal Well</th>
<th>Perforation Elevation (ft msl)</th>
<th>Aquifer</th>
</tr>
</thead>
<tbody>
<tr>
<td>11N/36W-12C1</td>
<td>-261 to -271</td>
<td>Paso Robles</td>
</tr>
<tr>
<td>11N/36W-12C2</td>
<td>-431 to -441</td>
<td>Pismo</td>
</tr>
<tr>
<td>11N/36W-12C3</td>
<td>-701 to -711</td>
<td>Pismo</td>
</tr>
<tr>
<td>12N/36W-36L1</td>
<td>-200 to -210</td>
<td>Paso Robles</td>
</tr>
<tr>
<td>12N/36W-36L2</td>
<td>-508 to -518</td>
<td>Pismo</td>
</tr>
</tbody>
</table>

For inland areas, criteria for water shortage conditions are based on annual Spring groundwater elevation measurements made in key wells located inland from the coast (the “Key Wells Index”). The inland Key Wells are as follows:

<table>
<thead>
<tr>
<th>Key Wells</th>
</tr>
</thead>
<tbody>
<tr>
<td>11N/34W-19</td>
</tr>
<tr>
<td>11N/35W-5</td>
</tr>
<tr>
<td>11N/35W-8</td>
</tr>
<tr>
<td>11N/35W-9</td>
</tr>
<tr>
<td>11N/35W-13</td>
</tr>
<tr>
<td>11N/35W-22</td>
</tr>
<tr>
<td>11N/35W-23</td>
</tr>
<tr>
<td>12N/35W-33</td>
</tr>
</tbody>
</table>

Potentially Severe Water Shortage Conditions

The Stipulation, page 25, defines Potentially Severe Water Conditions as follows:

Caution trigger point (Potentially Severe Water Shortage Conditions)

(a) Characteristics. The NMMA Technical Group shall develop criteria for declaring the existence of Potentially Severe Water Shortage Conditions. These criteria shall be approved by the Court and entered as a modification to this Stipulation or the judgment to be entered based upon this Stipulation. Such criteria shall be designed to reflect that water levels beneath the NMMA as a whole are at a point at

1 The multiple citations to and partial restatements of the Stipulation are intended to provide context to this Water Shortage Conditions and Response Plan. However, neither the restatement of a portion of the Stipulation herein, nor the omission of a portion of a quotation from the Stipulation, is intended to override or alter the mutual obligations and requirements set forth in the Stipulation.
which voluntary conservation measures, augmentation of supply, or other steps may be desirable or necessary to avoid further declines in water levels.

Inland Areas: The NMMA Technical Group set the criteria for a Potentially Severe Water Shortage Condition to the elevation of groundwater as determined by the Key Wells Index. If the Spring groundwater elevations indicate that the Key Wells Index is less than 15 feet above the Severe Water Shortage criterion (equal to 31.5 ft msl\(^2\)), the Technical Group will notify the Monitoring Parties of the current data, and evaluate the probable causes of this low level as described below. If the Key Wells Index continues to be lower than 31.5 ft msl in the following Spring, the Technical Group will report to the Court in the Annual Report that Potentially Severe Water Shortage Conditions are present and provide its recommendations regarding the appropriate response measures. During the period a Potentially Severe Water Shortage Condition persists, the NMMA Technical Group shall include in each Annual Report an assessment of the hydrologic conditions and any additional recommended response measures. A discussion of how the groundwater elevations criteria were determined is presented in discussion Section III. Potentially Severe Water Shortage Conditions will no longer be considered to exist when: 1) the Key Well Index is above the Potentially Severe criterion of 31.5 ft msl for two successive Spring measurements, or 2) the Key Well Index is 5 ft or higher above the Potentially Severe criterion (which calculates to 36.5 ft msl) in any Spring measurement. Alternatively, the NMMA Technical Group may determine that the Potentially Severe Water Shortage Condition no longer exists when the Key Well Index is above the Potentially Severe criterion of 31.5 ft msl and conditions warrant this conclusion.

The Key Well Index criteria for Potentially Severe Water Shortage Conditions may be modified in the future by the Technical Group as more data are developed on the accuracy of measured data and Key Well construction or condition.

Coastal Areas: The NMMA Technical Group set the coastal criteria for a Potentially Severe Water Shortage Condition using both groundwater surface elevation and groundwater quality measured in the coastal monitoring wells, as presented in the table below. The groundwater elevation criteria are discussed in Section III. The groundwater quality portion of the coastal criteria is set at 250 mg/L chloride. There is no water quality criterion for the shallow alluvium. Potentially Severe Water Shortage Conditions are determined if either the Spring groundwater elevation drops below the criteria elevation, or chloride concentration exceeds the criteria concentration, in any of the coastal monitoring wells subject to the Response Plan data analysis and verification described below.

\(^2\) The decimal point does not imply the accuracy of the historical low calculation.
The NMMA Technical Group will report to the Court in the Annual Report that Potentially Severe Water Shortage Conditions are present and provide its recommendations regarding the appropriate response measures. During the period a Potentially Severe Water Shortage Condition persists, the Technical Group shall include in each Annual Report an assessment of the hydrologic conditions and any additional recommended response measures.

When Spring groundwater elevations or groundwater quality subsequently improves so that the criteria threshold for two successive measurements are no longer exceeded, Potentially Severe Water Shortage Conditions will no longer be considered to exist. Alternatively, the Technical Group may determine that the Potentially Severe Water Shortage Condition no longer exists when the Spring groundwater elevation or groundwater quality criteria threshold are no longer exceeded in a single measurement and conditions warrant this conclusion.

The coastal threshold criteria for Potentially Severe Water Shortage Conditions may be modified in the future by the Technical Group as more data are developed on the accuracy and extent of the coastal data, including the potential for inclusion of additional coastal monitoring wells into the Monitoring Plan.

| Criteria for Potentially Severe Water Shortage Conditions, Coastal Area |
|---|-----------------|-----------------|-----------------|
| Well | Perforation | Elevation (ft msl) | Aquifer | Elevation Criteria (ft msl) | Chloride Concentration Criteria (mg/L) |
| 11N/36W-12C1 | -261 to -271 | Paso Robles | 5.0 | 250 |
| 11N/36W-12C2 | -431 to -441 | Pismo | 5.5 | 250 |
| 11N/36W-12C3 | -701 to -711 | Pismo | 9.0 | 250 |
| 12N/36W-36L1 | -200 to -210 | Paso Robles | 3.5 | 250 |
| 12N/36W-36L2 | -508 to -518 | Pismo | 9.0 | 250 |

Severe Water Shortage Conditions

The Stipulation, page 25, defines Potentially Severe Water Conditions as follows:

Mandatory action trigger point (Severe Water Shortage Conditions)

(a) Characteristics. The NMMA Technical Group shall develop the criteria for declaring that the lowest historic water levels beneath the NMMA as a whole
have been reached or that conditions constituting seawater intrusion have been reached. These criteria shall be approved by the Court and entered as a modification to this Stipulation or the judgment to be entered based upon this Stipulation.

Inland Areas: A Severe Water Shortage Condition exists when the Key Wells Index is less than **16.5 feet msl**, using Spring groundwater elevation measurements. The Mandatory Response Plan will remain in effect until groundwater elevations as indicated by the Key Wells Index are 10 ft above the Severe criterion (which calculates to **26.5 feet msl**). Alternatively, the NMMA Technical Group may determine that the Severe Water Shortage Condition no longer exists when the Key Well Index is above the Severe criterion of 16.5 ft msl and conditions warrant this conclusion.

The criteria for Severe Water Shortage Conditions may be modified in the future by the Technical Group as more data are developed on the accuracy of measured data and Key Well construction or condition.

Coastal Areas: The NMMA Technical Group set the coastal criteria for Severe Water Shortage Condition to the occurrence of the chloride concentration in groundwater greater than the drinking water standard in any coastal monitoring well. Thus, the coastal criterion for a Severe Water Shortage Condition is the chloride concentration exceeding **500 mg/L** in any of the coastal monitoring wells. If the criterion is exceeded, an additional sample will be collected and analyzed from that well as soon as practicable to verify the result. The response triggered by the measurement will not be in effect until the laboratory analysis has been verified. If the chloride concentration subsequently improves above the criterion threshold for two successive Spring measurements, Severe Water Shortage Conditions will no longer be considered to exist. Alternatively, the Technical Group may determine that the Severe Water Shortage Condition no longer exists when groundwater quality criteria threshold are no longer exceeded in a single measurement and conditions warrant this conclusion.

The coastal threshold criteria for Severe Water Shortage Conditions may be modified in the future by the Technical Group as more data are developed on the accuracy and extent of the coastal data, including the potential for inclusion of additional coastal monitoring wells into the Monitoring Plan.
II. Response Plan for Potentially Severe and Severe Water Shortage Conditions
("Response Plan")

Introduction

This Response Plan is triggered by criteria designed to reflect either Potentially Severe Water Shortage Conditions or Severe Water Shortage Conditions. Nothing in this Response Plan is intended to, nor shall operate so as to reduce, limit or change the rights, duties, and responsibilities of the parties to this Response Plan as those rights, duties, and responsibilities are stated in the Stipulation and the Judgment.

1. Potentially Severe Water Shortage Conditions

The responses required by the Stipulation are set forth as follows:

 VI(D)(1b) Responses [Potentially Severe]. If the NMMA Technical Group determines that Potentially Severe Water Shortage Conditions have been reached, the Stipulating Parties shall coordinate their efforts to implement voluntary conservation measures, adopt programs to increase the supply of Nipomo Supplemental Water if available, use within the NMMA other sources of Developed Water or New Developed Water, or implement other measures to reduce Groundwater use.

 VI(A)(5). ...In the event that Potentially Severe Water Shortage Conditions or Severe Water Shortage Conditions are triggered as referenced in Paragraph VI(D) before Nipomo Supplemental Water is used in the NMMA, NCSD, [GSWC], Woodlands and RWC agree to develop a well management plan that is acceptable to the NMMA Technical Group, and which may include such steps as imposing conservation measures, seeking sources of supplemental water to serve new customers, and declaring or obtaining approval to declare a moratorium on the granting of further intent to serve or will serve letters.

3 A defined term in the parties' Stipulation. The following terms, when used in this Response Plan, are terms whose definitions are found in the Stipulation and that definition is specifically incorporated herein and adopted as the meaning of these terms: "Developed Water," "Groundwater," "Native Groundwater," "New Developed Water," "Nipomo Supplemental Water," "Nipomo Supplemental Water Project," "Stipulating Parties" and "Year."

4 Ibid at p.25.

5 Name changed from Southern California Water Company (SCWC) in 2005.

6 Ibid at p.22.
The Response Plan shall be implemented when the Potentially Severe Water Shortage Conditions occur within the NMMA. The Response Plan is a combination of technical studies to better determine the nature of the threat, water supply and demand actions to mitigate overall conditions in the NMMA, and compliance with the Stipulation and the Judgment. The Response Plan includes, where applicable, the following:

1. Coastal Groundwater Elevation and/or Groundwater Quality Conditions:
 a. Verify that the measurement is not an anomaly by retesting at the site(s) of exceedence as soon as practicable and again in the following month.
 b. Characterize the extent of either low groundwater elevation(s) or increased chloride concentration(s) near the coast, which might include adding and/or installing additional monitoring points.
 c. Identify, to the extent practical, factors that contributed to the low groundwater elevations in coastal monitoring wells.
 d. Investigate whether increased chloride concentration(s) indicate intrusion of seawater or other causes through chemistry/geochemistry studies.

2. Inland Groundwater Elevation Condition:
 a. Verify that the measurement is not an anomaly by retesting at the site(s) of exceedence as soon as practicable and again in the following month.
 b. Characterize the extent of the area where groundwater elevation(s) have decreased sufficiently to lower the Key Wells Index.
 c. Identify factors that contributed to the low groundwater elevation(s) in coastal monitoring wells.

3. Implement sections VI(D)1(b) and VI(A)(5) of the Stipulation, as reproduced above.

4. When either the groundwater quality or groundwater elevation conditions are confirmed, the following provisions apply to the Response Plan for Potentially Severe Water Shortage Conditions:
 a. ConocoPhillips shall have the right to the reasonable and beneficial use of Groundwater on the property it owns as of the date of the Stipulation located in the NMMA without limitation.7

7 Ibid at p. 23.
b. Overlying Owners that are Stipulating Parties that own land located in the NMMA as of the date of the Stipulation shall have the right to the reasonable and beneficial use of Groundwater on their property within the NMMA without limitation.8

c. Woodlands shall not be subject to restriction in its reasonable and beneficial use of Groundwater, provided it is concurrently using or has made arrangements for other NMMA parties to use within the NMMA, the Nipomo Supplemental Water allocated to Woodlands. Otherwise, Woodlands shall be subject to reductions equivalent to those imposed on NCSD, GSWC, and RWC.9

2. Severe Water Shortage Conditions

The responses required by the Stipulation are set forth following:

VI(D)(1b) Responses [Severe]. As a first response, subparagraphs (i) through (iii) shall be imposed concurrently upon order of the Court. The Court may also order the Stipulating Parties to implement all or some portion of the additional responses provided in subparagraph (iv) below.

(i) For Overlying Owners other than Woodlands Mutual Water Company and ConocoPhillips, a reduction in the use of Groundwater to no more than 110% of the highest pooled amount previously collectively used by those Stipulating Parties in a Year, prorated for any partial Year in which implementation shall occur, unless one or more of those Stipulating Parties agrees to forego production for consideration received. Such forbearance shall cause an equivalent reduction in the pooled allowance. The base Year from which the calculation of any reduction is to be made may include any prior single Year up to the Year in which the Nipomo Supplemental Water is transmitted. The method of reducing pooled production to 110% is to be prescribed by the NMMA Technical Group and approved by the Court. The quantification of the pooled amount pursuant to this subsection shall be determined at the time the mandatory action trigger point (Severe Water Shortage Conditions) described in Paragraph VI(D)(2) is reached. The NMMA Technical Group shall determine a technically responsible and consistent method to determine the pooled amount and any individual’s contribution to the pooled amount. If the NMMA Technical Group cannot agree upon a technically responsible and consistent method to determine the pooled amount, the matter may be determined by the Court pursuant to a noticed motion.

8 Ibid.
9 Ibid at p. 23.
(ii) ConocoPhillips shall reduce its Yearly Groundwater use to no more than 110% of the highest amount it previously used in a single Year, unless it agrees in writing to use less Groundwater for consideration received. The base Year from which the calculation of any reduction is to be made may include any prior single Year up to the Year in which the Nipomo Supplemental Water is transmitted. ConocoPhillips shall have discretion in determining how reduction of its Groundwater use is achieved.

(iii) NCSD, RWC, SCWC, and Woodlands (if applicable as provided in Paragraph VI(B)(3) above) shall implement those mandatory conservation measures prescribed by the NMMA Technical Group and approved by the Court.

(iv) If the Court finds that Management Area conditions have deteriorated since it first found Severe Water Shortage Conditions, the Court may impose further mandatory limitations on Groundwater use by NCSD, SCWC, RWC and the Woodlands. Mandatory measures designed to reduce water consumption, such as water reductions, water restrictions, and rate increases for the purveyors, shall be considered.

(v) During Severe Water Shortage Conditions, the Stipulating Parties may make agreements for temporary transfer of rights to pump Native Groundwater, voluntary fallowing, or the implementation of extraordinary conservation measures. Transfer of Native Groundwater must benefit the Management Area and be approved by the Court.10

The following Response Plan for Severe Water Shortage Conditions is premised on the assumption that the Nipomo Supplemental Water Project within the NMMA is fully implemented and yet Severe Water Shortage Conditions exist.

If either the coastal or inland criteria occur for Severe Water Shortage Conditions within the NMMA, a Response Plan shall be implemented. The Response Plan is a combination of technical studies to better determine the nature of the threat, water supply and demand actions to mitigate overall conditions in the NMMA that triggered a Response Plan, and compliance with the terms of the Stipulation and the Judgment. It includes, where applicable, the following NMMA Technical Group actions:

1. Groundwater Quality Condition:
 a. Verify data.

10 Ibid at pp. 25-27.
b. Investigate whether increased chloride concentration(s) indicate intrusion of seawater or result from other causes through chemistry/geochemistry studies.

c. Characterize the extent of the increase in chloride concentration(s), which may include adding additional monitoring points and/or installing new monitoring points.

d. Given information from sections (a) and (b) above, identify the factors that may have caused the groundwater quality degradation.

2. Groundwater Elevation Condition:

a. Verify that the measurement is not an anomaly by retesting at the site(s) of exceedence as soon as practicable and again in the following month.

b. Characterize the extent of the area where groundwater elevation(s) have decreased sufficiently to lower the Key Wells Index.

c. Identify the factors that contributed to the low groundwater elevation(s) in key wells.

3. As a first response, the NMMA Technical Group shall request the Court to order concurrently sections VI(D)(1b)(i) through (iii) of the Stipulation, as reproduced above.

4. Prepare a semi-annual report on the trend in chloride concentration for the Court. If chloride concentration(s) continue to increase at the coastline, request the Court to implement section VI(D)(1b)(iv) of the Stipulation, as reproduced above.

5. During Severe Water Shortage Conditions, the Stipulating Parties may make agreements for temporary transfer of groundwater pumping rights in accordance with section VI(D)(1b)(v) of the Stipulation, as reproduced above.

III. Discussion of Criteria for Potentially Severe and Severe Water Shortage Conditions

1. Water Shortage Conditions as a Whole

The Stipulation established that the Severe Water Shortage Conditions is characterized by the lowest historic groundwater levels beneath the NMMA as a whole. The NMMA Technical Group selected the data from eight inland key wells to represent the whole of the NMMA. These wells are listed in the following tabulation and are shown on the
figure entitled “NMMA Key Wells”. The average Spring groundwater elevation of these key wells is used to calculate the Key Wells Index (“Index”).

Key Wells For Inland Criterion

- 11N/34W-19
- 11N/35W-5
- 11N/35W-8
- 11N/35W-9
- 11N/35W-13
- 11N/35W-22
- 11N/35W-23
- 12N/35W-33

The Index was calculated annually using Spring groundwater elevation measurements from 1975 to 2008. The Key Wells were selected to represent various portions of the groundwater basin within the NMMA. The following charts display the hydrographs for each Key Well and surrounding wells. The open circles represent the actual Spring value for that year or a correlation of that value for each year that was used to compute the Index.

When there was no Spring groundwater elevation measurement for a particular year, the value was determined by either 1) interpolating between Spring measurements in adjacent years or 2) computing the Spring elevation by taking the Fall measurements in adjacent years and increasing the value by the typical increase in groundwater elevations.
between Spring and Fall measurements in that well. If there is a significant data gap in the record for a particular well (e.g., 22 well below), a nearby well was used to fill the gap.
In selecting the eight key wells, the following criteria were applied so that the wells generally represent the NMMA as a whole:

(1) The wells are geographically distributed.

(2) No single well overly influences the Index.
The first criterion was met in the selection of the wells. To meet the second criterion, groundwater elevations from each well were normalized so that any well where elevations were on the average higher or lower than the other wells did not overly influence the overall Index. This normalization was accomplished by dividing each Spring groundwater elevation measurement by the sum of all the Spring groundwater elevation data for that well.

The Index was defined for each year as the average of the normalized Spring groundwater data from each well. The lowest value of the Index could be considered the “historical low” within the NMMA. The sensitivity of that “historical low” was tested by examining the effect of eliminating a well from the Key Wells Index. Eight separate calculations of the Index from 1975 to 2008 were made by excluding the data from one of the eight wells, and computing the average value for each year from the remaining wells’ normalized Spring groundwater data.

The criterion for a Potentially Severe Water Shortage Conditions should provide for enough time before the Severe criterion occurs to allow pumpers time to implement voluntary measures to mitigate a falling Key Wells Index. Based on the assumption that two years is adequate for this early warning, then the historical Index can be used to determine the potential rate of fall of the Index. The maximum drop in the historical Index over a two-year period was about 15 feet, during the last two years of the 1986-1991 drought. Thus, the criterion for Potentially Severe Water Shortage Conditions is set at 15 feet above the Severe Water Shortage Condition criterion, which calculates to 31.5 ft msl. The Key Wells Index for all eight wells, which will be computed each year in the future, will be compared to the Potentially Severe and Severe criteria discussed above. The Index through 2008 is shown below.
Key Wells Index for the period 1975 to 2008. Upper dashed line is criterion for Potentially Severe Water Shortage Conditions and lower dashed line is criterion for Severe Conditions.

The Index generally tracks wet and dry climatic cycles, indicating the importance of natural recharge in the NMMA. Significant deviations from this climatic tracking could occur if supplemental water deliveries reduced pumping, if overlying land use changed the return flows to the aquifer, or if there was a large change in groundwater extractions in addition to those resulting from the introduction of the Supplemental Water.

A. Seawater Intrusion Criteria for Potentially Severe Water Shortage Conditions

The criteria for potentially severe conditions in coastal areas are either gradient conditions that could pull seawater into the principal aquifer, or threshold chloride concentrations detected in coastal monitoring wells. Whereas chloride is the principal indicator for the groundwater quality portion of this criteria, other groundwater quality constituents may be considered for future refinement of this criteria.

To avoid seawater contamination, groundwater elevations in the coastal monitoring wells must be sufficiently high to balance higher-density seawater (about 2.5 of extra head is required for every 100 ft of ocean depth of an offshore outcrop of the aquifer). Thus, if an aquifer is penetrated at 100 ft below sea level in a coastal well, it is assumed that groundwater elevations in that aquifer must be at least 2.5 ft above sea level to counteract the higher density of seawater. Although offshore outcrop areas are not currently defined, it is assumed that some hydraulic connection between the onshore aquifers and seawater at the sea floor is possible or even probable.
Historical groundwater elevation data from these coastal wells indicate that groundwater elevations have not always been higher than the theoretical elevations of fresh water to balance sea water, described in the preceding paragraph. It is not known to what extent (if any) that seawater has advanced toward the land during the periodic depression of groundwater elevation, nor has any groundwater quality data supported the indication that seawater has contaminated the fresh water aquifer at the coastal monitoring well locations. Thus, coastal groundwater elevation criteria must take into account the periodic depression of groundwater elevations. To accommodate these fluctuations and until further understanding is developed, the coastal criteria are presented in the table below, based on the lower of 1) historical low groundwater elevations in the coastal monitoring wells or 2) a calculation of 2.5 ft of elevation for every 100 ft of aquifer depth in the well. If the historical low elevation is used, the value is reduced by one foot and rounded to the nearest half-foot. Similarly, if a calculated value is the lower option, it is rounded to the nearest half-foot. The results of these criteria are indicated in the following table.

<table>
<thead>
<tr>
<th>Well</th>
<th>Perforations Elevation (ft msl)</th>
<th>Aquifer</th>
<th>Historic Low (ft msl)</th>
<th>2.5' per 100' Depth (ft msl)</th>
<th>Highest Elevation Criteria (ft msl)</th>
<th>Chloride Concentration Criteria (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11N/36W-12C1</td>
<td>-261 to -271</td>
<td>Paso Robles</td>
<td>5.8</td>
<td>6.5</td>
<td>7.0</td>
<td>250</td>
</tr>
<tr>
<td>11N/36W-12C2</td>
<td>-431 to -441</td>
<td>Pismo</td>
<td>6.3</td>
<td>10.8</td>
<td>15.0</td>
<td>250</td>
</tr>
<tr>
<td>11N/36W-12C3</td>
<td>-701 to -711</td>
<td>Pismo</td>
<td>10.1</td>
<td>17.5</td>
<td>20.0</td>
<td>250</td>
</tr>
<tr>
<td>12N/36W-36L1</td>
<td>-200 to -210</td>
<td>Paso Robles</td>
<td>4.3</td>
<td>5.7</td>
<td>6.5</td>
<td>250</td>
</tr>
<tr>
<td>12N/36W-36L2</td>
<td>-508 to -518</td>
<td>Pismo</td>
<td>10.1</td>
<td>13.4</td>
<td>16.4</td>
<td>250</td>
</tr>
</tbody>
</table>

The groundwater quality portion of the criteria is set at 250 mg/L chloride. There is no groundwater quality criterion for the shallow alluvium. Although there is no assumption that seawater intrusion has occurred at this concentration, the cause of the rise in chloride concentration must be investigated and appropriate mitigation measures taken. Thus, Potentially Severe Water Shortage Conditions are established if either the groundwater elevation or groundwater quality criteria are met.

B. Seawater Intrusion Criteria for Severe Water Shortage Conditions

One criterion for Severe Water Shortage Conditions is the occurrence of conditions that result in chloride concentration(s) in groundwater greater than the drinking water standard in any of the coastal monitoring wells.
A principal threat for such occurrence is from seawater intrusion. The first evidence of seawater intrusion can occur very quickly or may involve a slower and more subtle change. Because the rate of change for chloride concentrations during seawater intrusion is difficult to predict for the NMMA, the criterion is set to the Maximum Contaminant Level for chloride in drinking water.

The Nipomo Mesa Technical Group set the coastal criterion for Severe Water Shortage Conditions at a chloride concentration at or above **500 mg/L** in any of the coastal monitoring wells. If the criterion is exceeded, an additional sample will be collected and analyzed from that well as soon as practically possible to verify the result. The Severe Water Shortage Condition will not be in effect until the laboratory analysis has been verified.
Appendix C: Well Management Plan
Stage 1: Potentially Severe Water Shortage Conditions

- Potentially Severe Water Shortage Conditions Triggered;
- Voluntary measures urged by Water Purveyors (NCSD, GSWC, Woodlands, and RWC). See list of “Recommended Water Use Restrictions;”
- Voluntary evaluation of sources of new supplemental water;
- Voluntary purveyor conservation goal of 15% (Baseline to be suggested by the NMMA TG);
- Voluntary/Recommended public information program;
- Voluntary evaluation and implementation of shifting pumping to reduce GW depressions and/or protect the seaward gradient. This includes the analysis and establishment of a potential network of purveyor system interties to facilitate the exchange of water;

1 This Well Management Plan is required by the terms of the Stipulation (page 22). The Well Management Plan provides for steps to be taken by the NCSD, GSWC, Woodlands and RWC under a factual scenario where Nipomo Supplemental Water (a defined term in the Stipulation) has not been “used” in the NMMA (page 22). The Well Management Plan, therefore, has no applicability to either ConocoPhillips or Overlying Owners as defined in the Stipulation (page 22).

2 Water shortage conditions are characterized by criteria designed to reflect that groundwater levels beneath the NMMA as a whole are at a point at which a response would be triggered to avoid further declines in the groundwater levels (potentially severe), and to declare that the lowest historic groundwater levels beneath the NMMA as a whole have been reached or that conditions constituting seawater intrusion have been reached (severe). See current version of Water Shortage Conditions and Response Plan – appendix to Annual Report.
Stage 2: Severe Water Shortage Conditions

- Severe Water Shortage Conditions Triggered and Nipomo Supplemental Water has been used in the NMMA (see footnote 1)\(^3\);

- Overlying landowners other than Woodlands and ConocoPhillips shall reduce groundwater use to no more than 110% of the highest pooled base year prior to the transmittal of Nipomo supplemental water. The NMMA TG will determine a technically responsible and consistent method to determine the pooled amount and an individual’s contribution (To be determined when trigger occurs). The method of reducing pooled production to 110% is to be prescribed by the TG and approved by the court. Landowners may consider using less water for consideration received;

- ConocoPhillips shall reduce its yearly groundwater use to no more than 110% of the highest amount it used in a single year prior to the transmittal of Nipomo supplemental water. ConocoPhillips may consider using less water for consideration received and has discretion to determine how its groundwater reduction is achieved;

- Water Purveyors (NCSD, GSWC, Woodlands, and RWC) shall implement mandatory conservation measures. Where possible, institute mandatory restrictions with penalties;

- The mandatory conservation goals will be determined by the NMMA TG when the Severe water shortage trigger is reached. Annually, should conditions worsen; the NMMA TG will re-evaluate the mandatory conservation goal;

- Measures may include water reductions, additional water restrictions, and rate increases. GSWC and RWC shall aggressively file and implement\(^4\) a schedule 14.1 mandatory rationing plan with the CPUC consistent with the mandatory goals;

- Penalties, rates, and methods of allocation under the rationing program shall be at the discretion of each entity and its regulating body;

\(^3\) [see comment at footnote #1] Water shortage conditions are characterized by criteria designed to reflect that groundwater levels beneath the NMMA as a whole are at a point at which a response would be triggered to avoid further declines in the groundwater levels (potentially severe), and to declare that the lowest historic groundwater levels beneath the NMMA as a whole have been reached or that conditions constituting seawater intrusion have been reached (severe). See current version of Water Shortage Conditions and Response Plan (appendix to Annual Report).

\(^4\) CPUC has the authority to set rates and allow mandatory conservation actions. As CPUC regulated entities, GSWC and RWC cannot implement such programs without CPUC approval.
- Aggressive voluntary public information program which includes discussions with high use water users such as school districts, parks, and golf courses to seek voluntary reductions in potable water irrigation;
List of Recommended Water Use Restrictions

The following provisions are examples of what may be considered prohibited, nonessential, and/or unauthorized water use:

1) Prohibit nonessential and unauthorized water use, including but not limited to:
 a) Use of potable water for more than minimal landscaping, as defined in the landscaping regulated of the jurisdiction or as described in Article 10.8 of the California Government Code in connection with new construction;
 b) Use through any meter when the company has notified the customer in writing to repair a broken or defective plumbing, sprinkler, watering or irrigation system and the customer has failed to effect such repairs within five business days;
 c) Use of potable water which results in flooding or runoff in gutters or streets;
 d) Individual private washing of cars with a hose except with the use of a positive action shut-off nozzle. Use of potable water for washing commercial aircraft, cars, buses, boats, trailers, or other commercial vehicles at any time, except at commercial or fleet vehicle or boat washing facilities operated at a fixed location where equipment using water is properly maintained to avoid wasteful use;
 e) Use of potable water washing buildings, structures, driveways, patios, parking lots, tennis courts, or other hard-surfaced areas, except in the cases where health and safety are at risk;
 f) Use of potable water to irrigate turf, lawns, gardens, or ornamental landscaping by means other than drip irrigation, or hand watering without quick acting positive action shut-off nozzles, on a specific schedule, for example: 1) before 9:00 a.m. and after 5:00 p.m.; 2) every other day; or 3) selected days of the week;
 g) Use of potable water for watering streets with trucks, except for initial wash-down for construction purposes (if street sweeping is not feasible), or to protect the health and safety of the public;
 h) Use of potable water for construction purposes, such as consolidation of backfill, dust control, or other uses unless no other source of water or other method can be used.
i) Use of potable water for construction purposes unless no other source of water or other method can be used;

j) Use of potable water for street cleaning;

k) Operation of commercial car washes without recycling at least 50% of the potable water used per cycle;

l) Use of potable water for watering outside plants, lawn, landscape and turf areas during the hours of 9:00 am to 5:00 pm;

m) Use of potable water for decorative fountains or the filling or topping off of decorative lakes or ponds. Exceptions are made for those decorative fountains, lakes, or ponds which utilize recycled water;

n) Use of potable water for the filling or refilling of swimming pools.

o) Service of water by any restaurant except upon the request of a patron; and

p) Use of potable water to flush hydrants, except where required for public health or safety.
Appendix D: Data Acquisition Protocol for Groundwater Level Measurement for the Nipomo Mesa Management Area
Data Acquisition Protocol for Groundwater Level Measurement for the Nipomo Mesa Management Area

Introduction

The purpose of this memorandum is to establish a protocol for measuring and recording groundwater levels for Nipomo Mesa Management Area (NMMA) wells, and to describe various methods used for collecting meaningful groundwater data. Static groundwater levels obtained for the NMMA monitoring program are determined by measuring the distance to water in a non-pumping well from a measuring point that has been referenced to sea level. Subtracting the distance to water from the elevation of the measuring point determines groundwater surface elevations above or below sea level. This is represented by the following equation:

\[E_{GW} = E_{MP} - D \]

Where:

- \(E_{GW} \) = Elevation of groundwater above mean sea level (feet)
- \(E_{MP} \) = Elevation above sea level at measuring point (feet)
- \(D \) = Depth to water (feet)

Groundwater elevation data can be used to construct groundwater contour maps, determine groundwater flow direction and hydraulic gradients, show locations of groundwater recharge, determine amount of water in storage, show changes in groundwater storage over time, and identify other aquifer characteristics. Miss-representation of aquifer conditions result from errors introduced during water level measurements, from a changed measuring point, during data recording, from equipment problems, or from using inappropriate measuring equipment or techniques for a particular well.

In an effort to minimize such errors and to standardize the collection of groundwater data, the U.S. Geological Survey (U.S.G.S.) has conducted extensive investigations into methods for measuring groundwater levels. In conjunction with several other federal agencies, the U.S.G.S. published the “National Handbook of Recommended Methods for Water-Data Acquisition” (1977); “Introduction to Field Methods for Hydrologic and Environmental Studies, (2001); and several Stand-alone Procedure Documents (GWPD, 1997). Excerpts from these publications relating to water-level measurements are attached. The following protocol for obtaining and reporting accurate data, including a discussion of potential errors associated with several measurement techniques, are based on these U.S.G.S. documents.

Well Information

To give the most meaningful value to the data obtained in the NMMA monitoring program, each well file should include as much information as is available. Table 1 below lists important well information to be maintained in a well file or in a field notebook. Additional information that should be available to the person collecting water-level data should include a description of access to the...
property and the well, the presence and depth of cascading water, or downhole obstructions that could interfere with a sounding cable. San Luis Obispo County Department of Public Works maintains well cards on the wells in the County monitoring network.

Table 1
Well File Information

<table>
<thead>
<tr>
<th>Well Completion Report</th>
<th>Hydrologic Information</th>
<th>Additional Information to be Recorded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well name</td>
<td>Map showing basin boundaries and wells</td>
<td>Township, Range, and ¼ ¼ Section</td>
</tr>
<tr>
<td>Well Owner</td>
<td>Name of groundwater basin</td>
<td>Latitude and Longitude (Decimal degrees)</td>
</tr>
<tr>
<td>Drilling Company</td>
<td>Description of aquifer</td>
<td>Assessor's Parcel Number</td>
</tr>
<tr>
<td>Location map or sketch</td>
<td>Confined, unconfined, or mixed aquifers</td>
<td>Description of well head and sounding access</td>
</tr>
<tr>
<td>Total depth</td>
<td>Pumping test data</td>
<td>Measuring point & reference point elevations</td>
</tr>
<tr>
<td>Perforation interval</td>
<td>Hydrographs</td>
<td>Well use and pumping schedule if known</td>
</tr>
<tr>
<td>Casing diameter</td>
<td>Water quality data</td>
<td>Date monitoring began</td>
</tr>
<tr>
<td>Date of well completion</td>
<td></td>
<td>Land use</td>
</tr>
</tbody>
</table>

Types of Wells

The monitoring program is likely to include several types of wells with various means of access and pumping schedules. It is important to understand the characteristics of each well type and its downhole conditions to best determine monitoring schedules and appropriate measuring technique. Below is a brief summary of well types and their pumping characteristics. A more detailed description of these well types is included in the attached “National Handbook of Recommended Methods for Water-Data Acquisition”.

Existing Wells
These include abandoned wells, irrigation wells, public supply wells, and domestic wells. Existing wells provide convenient and inexpensive measuring sites; however, they should be carefully evaluated to show that they can provide accurate data under static conditions with reliable access.

Abandoned wells are often in poor condition and may have partially collapsed casing or accumulated sediments. Damaged casing may also result in cascading water. An undamaged well with the pump removed, however, can provide easy access and reliable water-level data.

Irrigation wells are generally pumped on a regular schedule, allowing static water-level measurements to be taken during known non-pumping periods. Seasonal changes in the pumping schedules should also be noted when planning monitoring events.

Public supply wells may be part of a monitoring program if sufficient information regarding their operations is available. Hydrographs showing periods of pumping and recovery should be obtained to determine the best time to measure static water levels.
Domestic wells are generally pumped frequently and for short durations, making it difficult to monitor during static conditions. Determining when the lowest domestic water use occurs during the day can facilitate monitoring schedules.

Observation Wells
These wells are designed for specific sites and depths in known hydrogeologic conditions to supply desired information. Typically, there is no permanent pump, making measurements relatively easy.

Piezometers
A piezometer is a small diameter observation well designed to measure the hydraulic head within a small zone. It should have a very short screen and filter pack interval so it can represent the hydraulic head at a single point within the aquifer.

Access to Supply Wells
Access into a well to obtain a water level measurement depends on pump types and wellhead construction. For turbine-pump wells, there is typically an opening between the pump column and the casing either through a port or between the base plate and the casing. The filter-pack fill tube should not be confused with a casing vent or sounding access pipe. In some wells, there is no access for a downhole measuring tape; however, the well may be equipped with an air-line measuring system.

Access to submersible wells is generally through a small diameter plug located in the plate on top of the casing. In wells where there is no sounding tube, caution should be used during water level measurements to minimize the chance of the sounding tape becoming entangled with the power cable. Additional information and wellhead diagrams regarding supply well access is found in the attached “National Handbook of Recommended Methods for Water-Data Acquisition”.

Measuring Points and Reference Points
Measuring point (MP) elevations are the basis for determining groundwater elevations relative to sea level. The MP is generally that point on the well head that is the most convenient place to measure the water level in a well. In selecting an MP, an additional consideration is the ease of surveying either by Global Positioning System (GPS) or by leveling.

The MP must be clearly defined, well marked, and easily located. If permissible, the point should be labeled with the letters MP and an arrow. A description, sketch, and photograph of the point should be included in the well file.
The Reference Point (RP) is a surveyed point established near the wellhead on a permanent object. It serves as a benchmark by which the MP can be checked or re-surveyed if the MP is changed. The RP should be marked, sketched, photographed, and described in the well file.

All MPs and RPs for the NMMA monitored wells should be surveyed using the same horizontal and vertical datum by a California licensed surveyor to the nearest tenth of one foot vertically, and the nearest one foot horizontally. The surveyor’s report should be maintained in the project file.

In addition to the MP and RP survey, the elevation of the ground surface adjacent to the well should also be surveyed and recorded in the well file. Because the ground surface adjacent to a well is rarely uniform, the average surface level should be estimated. This average ground surface elevation is referred to in the U.S.G.S. Procedural Document (GWPD-1, 1997) as the Land Surface Datum (LSD).

Water-Level Data Collection

Prior to beginning the field work, the field technician should review each well file to determine which well owners require notification of the upcoming site visit, or which well pumps need to be turned off to allow for water level recovery. Because groundwater elevations are used to construct groundwater contour maps and to determine flow direction, all water level measurements should be collected within a 24-hour period or within as short a period as possible. Weather and groundwater conditions are least likely to change significantly during a short period for data collection. For an individual well, the same measuring method and the same sounder should be used during each sampling event where practical.

Prior to taking a measurement, the length of time since a pump has been operating should be determined. If possible, a domestic well should be allowed to recover at least one half hour prior to measuring, whereas an irrigation or public well should recover a minimum of eight hours prior to measuring. If the well is capped but not vented, remove the cap and wait several minutes before measurement to allow water levels to equilibrate to atmospheric pressure.

When there is doubt about whether water levels in a well are continuing to recover, repeated measurements should be made. Or, if an electric sounder is being used, it is possible to hold the sounder level at one point just above the known water level and wait for a signal that would indicate rising water. For each well, the general schedule of pump operation should be determined and noted.

When lowering a graduated steel tape (chalked tape) or electric tape in a well without a sounding tube in an equipped well, the tape should be played out slowly by hand to minimize the chance of the tape end becoming caught in a downhole obstruction. The tape should be held in such a way that any change in tension will be felt. When withdrawing a sounding tape, it should also be brought up slowly so that if an obstruction is encountered, tension can be relaxed so that the tape can be lowered again before attempting to withdraw it around the obstruction.

All water level measurements should be made to an accuracy of 0.1 feet. The field technician should make at least two measurements. If measurements of static levels do not agree within 0.1 feet, the
technician should continue measurements until the reason for the disparity is determined, or the measurements are within 0.1 feet.

Where groundwater levels are found to be above ground surface, a sensitive pressure gage can be used to determine the height above the measuring point or a sealed well could have a manometer tube that would show the height above ground surface. A manometer tube may not be high enough to measure the water level if the groundwater is under more than 5 feet of pressure.

Record Keeping in the Field

The information recorded in the field is often the only remaining evidence of the conditions at the time of the monitoring event. It is important that the field book be protected carefully and that it contains the name of the field technician and appropriate contact information. Because the field book contains original tables of multiple monitoring events, copies of the tables should be made following each monitoring event. The data can be further protected by entering the data electronically as soon as practicable.

All field notes must be recorded during the time the work is being done in the field. Accurate documentation of field conditions cannot be made after the field technician has returned to the office. Because much of the data will be reviewed by office staff, and because more than one field technician may participate in the monitoring program, it is essential that notes be intelligible to anyone without requiring a verbal explanation. As a means to support field information, sketches or digital photos attached to field notes should be encouraged.

All field notes should be made with a sharp pencil with lead appropriate for the conditions. Erasures should not be made when recording data. A single line should be drawn through an error without obscuring its legibility, and the correct value or information should be written adjacent to it or in a new row below it.

During each monitoring event it is important to record any conditions at a well site and its vicinity that may affect groundwater levels, or the field technician’s ability to obtain groundwater levels. Table 2 lists important information to record, however, additional information should be included when appropriate. Table 3, The Water Level Measurement Form, is a suggested format for recording field data.

Table 2

<table>
<thead>
<tr>
<th>Information Recorded at Each Well Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well name</td>
</tr>
<tr>
<td>Name and organization of field technician</td>
</tr>
<tr>
<td>Date & time (time in 24-hour notation)</td>
</tr>
<tr>
<td>Measurement method used</td>
</tr>
<tr>
<td>Sounder used</td>
</tr>
<tr>
<td>Most recent sounder calibration</td>
</tr>
</tbody>
</table>
Measurement Techniques

Four standard methods of obtaining water levels are discussed below. The chosen method depends on site and downhole conditions, and the equipment limitations. In all monitoring situations, the procedures and equipment used should be documented in the field notes and in final reporting. Additional detail on manual methods of water level measurement is included in the attached U.S.G.S. Stand-Alone Procedure Documents and the “National Handbook of Recommended Methods for Water-Data Acquisition”. The attached “Introduction to Field Methods for Hydrologic and Environmental Studies” includes a discussion of pressure transducers.

Graduated Steel Tape
This method uses a graduated steel tape with a brass or stainless steel weight attached to its end. The tape is graduated in feet. The approximate depth to water should be known prior to measurement.

- Chalk the lower few feet of the tape by applying blue carpenter’s chalk.
- Lower the tape to just below the estimated depth to water so that a few feet of the chalked portion of the tape is submerged. Be careful not to lower the tape beyond its chalked length.
- Hold the tape at the MP and record the tape position (this is the “hold” position and should be at an even foot);
- Withdraw the tape rapidly to the surface;
- Record the length of the wetted chalk mark;
- Subtract the wetted chalk number from the “hold” position number and record this number in the “Depth to Water below MP” column;
- Perform a check by repeating the measurement using a different MP hold value;
- All data should be recorded to the nearest 0.01 foot;
- Disinfect the tape by pouring a small amount of chlorine bleach on a clean cloth and wiping down the portion of the tape that was submerged below the water surface.

The graduated steel tape is generally considered to be the most accurate method for measuring static water levels. Measuring water levels in wells with cascading water or with condensing water on the well casing causes potential errors, or can be impossible. The tape should be calibrated against another steel tape that is maintained in the office and is used only for calibration.

Electric Tape
An electric tape operates on the principle that an electric circuit is completed when two electrodes are submerged in water. Most electric tapes are mounted on a hand-cranked reel equipped with batteries and an ammeter, buzzer or light to indicate when the circuit is closed. Tapes are graduated in either one-foot intervals or in hundredths of feet depending on the manufacturer. Like graduated steel tapes, electric tapes are attached with brass or stainless steel weights.

- Check the circuitry of the tape before lowering the probe into the well by dipping the probe into water and observe if the ammeter needle or buzzer/light signals that the circuit is closed;
- Lower the probe slowly and carefully into the well until the signal indicates that the water surface has been reached;
• Place a finger or thumb on the tape at the MP when the water surface is reached;
• If the tape is graduated in one-foot intervals, partially withdraw the tape and measure the distance from the MP mark to the nearest one-foot mark to obtain the depth to water below the MP. If the tape is graduated in hundredths of a foot, simply record the depth at the MP mark as the depth to water below the MP;
• Make all readings using the same needle deflection point on the ammeter scale (if equipped) so that water levels will be consistent between measurements;
• Make check measurements until agreement shows the results to be reliable;
• All data should be recorded to the nearest 0.01 foot;
• Disinfect the tape by pouring a small amount of chlorine bleach on a clean cloth and wiping down the submerged portion of the tape;
• Periodically check the tape for breaks in the insulation. Breaks can allow water to enter into the insulation creating electrical shorts that could result in false depth readings.

The electric tape may give slightly less accurate results than the graduated steel tape. Errors can result from signal “noise” in cascading water, breaks in the tape insulation, or tape stretch. Electric tape products graduated in hundredths of a foot generally give more accurate results than electric tapes graduated in one-foot intervals. This accuracy difference is due to less stretch and ease of measurement in the tapes graduated in hundredths of a foot. All electric tapes should be calibrated periodically against a steel tape that is maintained in the office and used only for calibration.

Air Line
The air line method is usually used only in wells equipped with pumps. This method typically uses a 1/8 or 1/4-inch diameter, seamless copper tubing, brass tubing, or galvanized pipe with a suitable pipe tee for connecting an altitude or pressure gage. Plastic tubing may also be used, but is considered less desirable. An air line must extend far enough below the water level that the lower end remains submerged during pumping of the well. The air line is connected to an altitude gage that reads directly in feet of water, or to a pressure gage that reads pressure in pounds per square inch (psi). The gage reading indicates the length of the submerged air line.

The formula for determining the depth to water below the MP is: \(d = k - h \) where \(d \) = depth to water; \(k \) = constant; and \(h \) = height of the water displaced from the air line. In wells where a pressure gage is used, \(h \) is equal to 2.31 ft/psi multiplied by the gage reading. The constant value for \(k \) is approximately equivalent to the length of the air line.

• Calibrate the air line by measuring an initial depth to water \((d) \) below the MP with a graduated steel tape. Use a tire pump, air tank, or air compressor to pump compressed air into the air line until all the water is expelled from the line. When all the water is displaced from the line, record the stabilized gage reading \((h) \). Add \(d \) to \(h \) to determine the constant value for \(k \).
• To measure subsequent depths to water with the air line, expel all the water from the air line, subtract the gage reading \((h) \) from the constant \(k \), and record the result as depth to water \((d) \) below the MP.

The air line method is not as accurate as a graduated steel tape or electric tape. Measurements with an altitude gage are typically accurate to approximately 0.1 foot, and measurements using a pressure
gage are accurate to the nearest one foot at best. Errors can occur with leaky air lines, or when tubing becomes clogged with mineral deposits or bacterial growth.

Submersible Pressure Transducers

Electrical pressure transducers make it possible to collect frequent and long-term water-level or pressure data from wells. These pressure-sensing devices, installed at a fixed depth in a well, sense the change in pressure against a membrane. The pressure changes occur in response to changes in the height of the water column in the well above the transducer. To compensate for atmospheric changes, transducers may have vented cables or they can be used in conjunction with a barometric transducer that is installed in the same well or a nearby observation well above the water level.

Transducers are selected on the basis of expected water-level fluctuation. The smallest range in water levels provides the greatest measurement resolution. Accuracy is generally 0.01 to 0.1 percent of the full scale range.

Retrieving data in the field is typically accomplished by downloading data through a USB connection to a portable “lap-top” computer. A site visit to retrieve data should involve several steps designed to safeguard the data and the continued useful operation of the transducer:

- Inspect the wellhead and check that the transducer cable has not moved or slipped;
- Ensure that the instrument is operating properly;
- Measure and record the depth to water with a graduated steel or electric tape;
- Document the site visit, including all measurements and any problems;
- Retrieve the data and document the process;
- Review the retrieved data by viewing the file or plotting the original data;
- Recheck the operation of the transducer prior to disconnecting from the computer.

A field notebook with a checklist of steps and measurements should be used to record all field observations and the current data from the transducer. It provides an historical record of field activities. In the office, maintain a binder with field information similar to that recorded on the field notebook so that a general historical record is available there and can be referred to before and after a field trip.

Summary and Recommendations

Static groundwater levels obtained for the NMMA monitoring program are determined by measuring the distance to water from wellhead MPs that have been surveyed using an accepted sea level-based datum. Subtracting the distance to water from the elevation of an MP determines groundwater surface elevations above or below sea level. The following items should be considered important to creating and maintaining a successful monitoring program:

- All wells should be surveyed by a licensed surveyor;
• Three survey points should be set for each well: the MP on the wellhead, the RP on a nearby permanent object, and the adjacent ground surface;
• The points should be surveyed to the nearest tenth of one foot vertically, and the nearest one foot horizontally;
• A one-inch diameter water-level sounding tube should be installed in each NMMA monitoring program well;
• Static water levels should always be measured to the nearest 0.01 feet from the same measuring point, using the same measuring techniques for each well;
• Measurement techniques using graduated steel tapes, electric tapes graduated in hundredths of feet, or pressure transducers should be considered appropriate for the monitoring program;
• Because of its lower accuracy and higher potential for errors than other methods, the air-line method should not be used in the program;
• Thorough and accurate field documentation and complete project files are essential to a successful monitoring program.
Appendix E: Additional Data and Maps
Table 1: Addendum to 2nd Annual Report Calendar Year 2009

<table>
<thead>
<tr>
<th>Groundwater Production</th>
<th>AFY</th>
<th>AFY</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCSD</td>
<td>2,560</td>
<td></td>
</tr>
<tr>
<td>GSWC</td>
<td>1,290</td>
<td></td>
</tr>
<tr>
<td>Woodlands</td>
<td>810</td>
<td></td>
</tr>
<tr>
<td>ConocoPhillips</td>
<td>1,200</td>
<td></td>
</tr>
<tr>
<td>RWC</td>
<td>880</td>
<td></td>
</tr>
<tr>
<td>Rural Indoor</td>
<td>203</td>
<td></td>
</tr>
<tr>
<td>Rural Outdoor</td>
<td>885</td>
<td></td>
</tr>
<tr>
<td>Agriculture</td>
<td>4,379</td>
<td></td>
</tr>
<tr>
<td>Total Groundwater Production</td>
<td>12,200</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Return Flow</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rural Return Flow</td>
<td>183</td>
</tr>
<tr>
<td>Delivered RF</td>
<td>2,438</td>
</tr>
<tr>
<td>Total Return Flow</td>
<td>2,600</td>
</tr>
<tr>
<td>Consumptive Use of Groundwater</td>
<td>9,600</td>
</tr>
</tbody>
</table>

Table 2: Detailed Calculation of 2010 Estimated Groundwater Production and Percolation by Land Use category.

<table>
<thead>
<tr>
<th>Land Use Category</th>
<th>Acreage</th>
<th>Precipitation (202)</th>
<th>Crop ET (ETc)</th>
<th>ETC met by Precip</th>
<th>ETC met by Profile</th>
<th>Net Soil Water</th>
<th>Irrigation</th>
<th>Percolation past root zone</th>
<th>Total Percolation (AF)</th>
<th>Total Irrigation (AF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Native Vegetation</td>
<td></td>
</tr>
<tr>
<td>Grasses</td>
<td>5,657</td>
<td>17.61</td>
<td>12.05</td>
<td>2.67</td>
<td>9.36</td>
<td>-1.70</td>
<td>0.00</td>
<td>7.28</td>
<td>3431.06</td>
<td>0.00</td>
</tr>
<tr>
<td>Trees and Shrubs</td>
<td>7,032</td>
<td>17.61</td>
<td>59.81</td>
<td>4.04</td>
<td>15.10</td>
<td>-1.69</td>
<td>0.00</td>
<td>6.05</td>
<td>652.01</td>
<td>0.00</td>
</tr>
<tr>
<td>Deciduous</td>
<td>2</td>
<td>17.61</td>
<td>35.62</td>
<td>3.44</td>
<td>32.19</td>
<td>0.80</td>
<td>0.00</td>
<td>29.77</td>
<td>1,181</td>
<td>4.96</td>
</tr>
<tr>
<td>Pasture</td>
<td>2</td>
<td>17.61</td>
<td>41.14</td>
<td>5.68</td>
<td>37.45</td>
<td>-0.60</td>
<td>33.83</td>
<td>0.80</td>
<td>10.70</td>
<td>4.64</td>
</tr>
<tr>
<td>Vegetable Rotational</td>
<td>225</td>
<td>17.61</td>
<td>32.50</td>
<td>3.99</td>
<td>28.52</td>
<td>-0.29</td>
<td>24.11</td>
<td>9.51</td>
<td>178.27</td>
<td>452.08</td>
</tr>
<tr>
<td>Avocado and Lemon</td>
<td>277</td>
<td>17.61</td>
<td>24.90</td>
<td>2.90</td>
<td>22.00</td>
<td>-0.35</td>
<td>18.96</td>
<td>12.92</td>
<td>277.43</td>
<td>457.65</td>
</tr>
<tr>
<td>Strawberries</td>
<td>1,995</td>
<td>17.61</td>
<td>19.30</td>
<td>2.88</td>
<td>16.22</td>
<td>-0.48</td>
<td>13.30</td>
<td>12.29</td>
<td>1426.56</td>
<td>1544.47</td>
</tr>
<tr>
<td>Nursery</td>
<td>332</td>
<td>17.61</td>
<td>21.37</td>
<td>2.89</td>
<td>18.48</td>
<td>-0.03</td>
<td>16.45</td>
<td>12.72</td>
<td>223.29</td>
<td>363.87</td>
</tr>
<tr>
<td>Un-irrigated Ag Land</td>
<td>356</td>
<td>17.61</td>
<td>8.59</td>
<td>2.09</td>
<td>6.51</td>
<td>0.66</td>
<td>0.00</td>
<td>8.35</td>
<td>247.86</td>
<td>0.00</td>
</tr>
<tr>
<td>Residential</td>
<td></td>
</tr>
<tr>
<td>Golf Course</td>
<td>549</td>
<td>17.61</td>
<td>25.64</td>
<td>3.13</td>
<td>22.51</td>
<td>-0.01</td>
<td>18.72</td>
<td>16.70</td>
<td>489.34</td>
<td>856.35</td>
</tr>
<tr>
<td>Rural</td>
<td>415</td>
<td>17.61</td>
<td>17.95</td>
<td>2.67</td>
<td>15.28</td>
<td>0.00</td>
<td>15.28</td>
<td>28.50</td>
<td>344.96</td>
<td>892.82</td>
</tr>
<tr>
<td>Total</td>
<td>16,279</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6,622</td>
<td>4,558</td>
</tr>
</tbody>
</table>

Copy of document found at www.NoNewWipTax.com