TO: BOARD OF DIRECTORS

FROM: BRUCE BUEL

DATE: DECEMBER 5, 2008

FALL NMMA GROUNDWATER STORAGE CALCULATION

AGENDA ITEM

C-3

DECEMBER 10, 2008

ITEM

Dr. Brad Newton of SAIC re Fall NMMA GROUNDWATER STORAGE CALCULATIONS [NO ACTION REQUESTED].

BACKGROUND

Brad Newton of SAIC is scheduled to present the attached Technical Memorandum estimating the aggregate above sea level Groundwater Storage for the Nipomo Mesa Management Area at the Board Meeting. It should be noted that this Technical Memorandum has not been reviewed by the NMMA Technical Group.

RECOMMENDATION

Staff recommends that your Honorable Board receive the presentations and ask questions as appropriate.

ATTACHMENT -

* FALL 2008 NMMA GWS TECHNICAL MEMORANDUM

T:\BOARD MATTERS\BOARD MEETINGS\BOARD LETTER\BOARD LETTER 2008\081210SAIC.DOC

SCIENCE APPLICATIONS INTERNATIONAL CORPORATION WATER RESOURCES ENGINEERING - CARPINTERIA

1 TO: Bruce Buel, General Manager Nipomo Community Services District

2 FROM: Joel Degner, Brad Newton, Ph.D., P.G., Bob Beeby, P.E.

3 RE: Fall 2008 Groundwater in Storage above Mean Sea Level

4 DATE: December 1, 2008

5 INTRODUCTION

6 Groundwater surface elevations (GSE) underlying the Nipomo Mesa are regularly 7 measured at many places (wells) across the mesa. Hydrographs from individual wells provide 8 a temporal record of the GSE measurements at one location. Presented herein is the Fall 2008 9 GWS estimate along with estimates of historical annual variability in GWS from 1975 to 2008 10 based on groundwater surface elevation measurements collected during Spring and Fall across 11 the Nipomo Mesa. Limited measurements of GSE were available for the years 1982, 1983, 1984, 12 1994 and 1997, thus precluding a reliable estimate of GWS for those years.

13

14 RESULTS

Estimated Fall 2008 GWS is 65,000 acre-feet (AF), which is 18,000 AF less than Spring 2008
and 1,000 AF lower than Fall 2007 (Table 1, Figure 1).

17

18 METHODOLOGY

The annual estimates of Spring and Fall GWS are based on GSE measurements regularly made by San Luis Obispo County Department of Public Works (SLO DPW), NCSD, USGS, and Woodlands. The integration of GSE data is accomplished by using computer software to interpolate between measurements and calculate GWS within the principal production aquifer assuming an unconfined aquifer and a specific yield of 11.7 percent. Limited measurements of GSE were available for the years 1982, 1983, 1984, 1994 and 1997, precluding a reliable estimate of GWS for those years.

The amount of GWS under the Nipomo Mesa Management Area (NMMA) was computed by multiplying the saturated volume above sea level with the aerially weighted specific yield (DWR, 2002), excluding bedrock (Figure 11: Base of Potential Water-Bearing Sediments, presented in the report, Water Resources of the Arroyo Grande – Nipomo Mesa Area [DWR 2002]). The amount of GWS under the NMMA was constrained to the boundary determined in Phase III of the trial.

Data provided by DWR, consisting of well completion reports, lithographic logs, electronic logs, and pump tests, were used to develop an understanding of the hydrogeologic conditions underlying the NMMA. A systematic review of these data pertaining to wells used

w:\ncsd (9103 9235 5935)\tasks\general consultation - 9103\activities\tn13 gws fall 2008\supporting docs\2008-12-01 fall 2008 gws.docx

SAIC Engineering, Inc. A Subsidiary of Science Applications International Corporation 5464 Carpinteria Ave., Suite K • Carpinteria, CA 93013 • Telephone 805/566-6400 • Facsimile 805/566-6427 To: Bruce Buel Re: Fall 2008 GWS Date: December 1, 2008 Page: 2 of 2

for storage calculations was conducted in order to verify that each well's screened interval is 1 2 within the principal production aquifer (Paso Robles Formation).

3 Groundwater Surface Elevation Measurements

4 Groundwater surface elevation data were obtained from SLO DPW, NCSD, USGS, and 5 Woodlands (Table 2). SLO DPW measures GSE in monitoring wells during the spring and the 6 fall of each year. Woodlands and NCSD measures GSE in their monitoring wells monthly. For 7 the years 1975 to 1999, available representative GSE data were used to estimate GWS. For the 8 years 2000 to 2008, only GSE data from the same 45 wells were used to estimate GWS.

9 The GSE data was reviewed in combination with well completion reports and historical 10 hydrographic records in order to exclude measurements that do not accurately represent static water levels within the principal production aquifer. Wells that do not access the principal 11 12 production aquifer or were otherwise determined to not accurately represent static water levels 13 within the aquifer were not included in analysis.

14 **Groundwater Surface Interpolation**

15 The individual GSE measurements from each year were used to produce a GSE field by 16 interpolation using the inverse distance weighting (IDW) method.

17 Groundwater Volume Estimate

18 The amount of groundwater in storage under the Nipomo Mesa was estimated for the 19 boundary determined in Phase III of the trial. The GWS was estimated by subtracting both the 20 mean sea level surface (elevation equals zero) and the volume of bedrock above sea level from 21 the saturated volume. The bedrock surface elevation is based on Figure 11: Base of Potential 22 Water-Bearing Sediments, presented in the report, Water Resources of the Arroyo Grande -23 Nipomo Mesa Area (DWR 2002). The bedrock surface elevation was preliminarily verified by 24 reviewing driller reports obtained from DWR. The saturated volume above sea level was 25 multiplied by a specific yield of 11.7% to estimate the recoverable amount of GWS. The specific yield is based on the average weighted specific yield for the Nipomo Mesa Hydrologic Sub-26 27 Area (DWR 2002, pg. 86).

REFERENCES 28

29 Department of Water Resources (DWR). 2002. Water Resources of the Arroyo Grande -30 Nipomo Mesa Area, Southern District Report.

Copy of document found at www.NoNewWipTax.com

Table 1

Year	Rainfall (inches)	Spring GWS Number (Acre-Feet) of Wells		Fall GWS (Acre-Feet)	Number of Wells	Spring to Fall Difference (Acre-Feet)		
1975	17.29	99.000	54	91,000	54	8.000		
1976	13.45	82,000	45	76,000	65	6.000		
1977	10.23	64.000	59	54.000	63	10.000		
1978	30.66	84,000	62		35			
1979	15.80	72.000	57	77.000	63	(5.000)		
1980	16.57	88,000	55	89.000	46	(1,000)		
1981	13.39	97,000	46	75,000	47	22,000		
1982	18.58	123,000	42		31			
1983	33.21		35	95,000	42	1222		
1984	11.22		14	76,000	37			
1985	12.20	106,000	37	82,000	41	24,000		
1986	16.85	98,000	51	67,000	51	31,000		
1987	11.29	83,000	48	71,000	52	12,000		
1988	12.66	80,000	51	66,000	49	14,000		
1989	12.22	59,000	47	47,000	57	12,000		
1990	7.12	62,000	55	49,000	53	13,000		
1991	13.06	62,000	52	55,000	54	7,000		
1992	15.66	61,000	52	35,000	48	26,000		
1993	20.17	72,000	54	52,000	61	20,000		
1994	12.15	60,000	54		36			
1995	25.47	87,000	35	62,000	52	25,000		
1996	16.54	76,000	45	62,000	57	14,000		
1997	20.50		20	91,000	48			
1998	33.67	105,000	41	93,000	44	12,000		
1999	12.98	106,000	56	88,000	49	18,000		
2000	14.47	108,000	44	84,000	41	24,000		
2001	18.78	118,000	43	85,000	35	33,000		
2002	8.86	96,000	29	79,000	41	17,000		
2003	11.39	94,000	37	66,000	42	28,000		
2004	12.57	89,000	42	81,000	35	8,000		
2005	22.23	98,000	38	79,000	39	19,000		
2006	20.83	107,000	44	78,000	41	29,000		
2007	6.96	93,000	44	66,000	42	27,000		
2008	15.18	83,000	43	65,000	42	18,000		

Spring and Fall Groundwater in Storage above Mean Sea Level for Phase III Boundary

---: insufficient for evaluation

Figure 1

TO: BOARD OF DIRECTORS

FROM: BRUCE BUEL 3813

DATE: DECEMBER 5, 2008

MONTHLY ENGINEER UPDATE

ITEM

NCSD District Engineer Peter Sevcik re District Engineer Activities in November [NO ACTION REQUESTED].

BACKGROUND

Peter Sevcik is scheduled to summarize the attached outline.

RECOMMENDATION

Staff recommends that your Honorable Board receive the presentations and ask questions as appropriate.

ATTACHMENTS

District Engineer Activities Outline

T:\BOARD MATTERS\BOARD MEETINGS\BOARD LETTER\BOARD LETTER 2008\081210EngReport.DOC

NIPOMO COMMUNITY SERVICES DISTRICT

148 SOUTH WILSON STREET POST OFFICE BOX 326 NIPOMO, CA 93444 - 0326 (805) 929-1133 FAX (805) 929-1932 Web site address www.ncsd.ca.gov

MEMORANDUM

TO: BRUCE BUEL, GENERAL MANAGER

FROM: PETER V. SEVCIK, P.E., DISTRICT ENGINEER (YVS

DATE: DECEMBER 4, 2008

RE: DISTRICT ENGINEER ACTIVITIES UPDATE

Southland WWTF Upgrade

- o Revised Draft Master Plan completed
- o Draft Preliminary Screening Evaluation of Disposal Alternatives completed
- o Draft Initial Study, including Project Objectives, in progress
- Setup meeting with RWQCB staff

Water and Sewer Master Plan Implementation

- Reviewing process overview system design for SCADA upgrade
- Managing development of preventative maintenance plan
- o Developing bid document for lift station control panel replacement project
- o Managing standpipe mixing upgrade design
- Santa Maria Waterline Intertie Project
 - o Assisted with property acquisition negotiations
 - o Reviewed plan for pressure testing existing 12 inch waterline in Orchard Road
 - Continued to assist General Manager with project planning, environmental review, and Committee meetings

Willow Road Waterline Extension Phase 1 Project

- Met with County to review 50% design submittal
- Met with Cannon to review 50% design submittal and provided guidance for proceeding with design
- Working with General Manager, District Counsel and County to develop reimbursement agreement for County to install water line
- Waterline Relocation for County Drainage Project
 - o All work completed
 - o Working on closing out project
- Sewer System Management Plan
 - Developing Overflow Emergency Response Plan and Fats, Oils and Grease (FOG) Control Elements

Sundale Well

 Researched existing well construction and operating records to assist Cannon with development of electrical design for conversion

Safety Program

- o Continued to monitor on-line training program for all District employees
- Scheduled to conduct training for all operations employees on December 9

Development Plan Review

- Village at Nipomo Reimbursement Agreement Mary Avenue waterline
- Tract 2652 Reimbursement Agreement Juniper sanitary sewer
- Tract 2689 construction conflict resolution
- o Continued service request, plan check and project acceptance processing

Other

- o Monthly production well level report and measurement investigation
- o Submitted monthly compliance reports for the water and sewer systems
- o Provided support as needed to Utility Superintendent

Attachments

NCSD Production Well Water Level and Rainfall Graph NCSD Production Well Pumping Status at Time of Level Measurement

Copy of document found at www.NoNewWipTax.com

NCSD Production Well Pumping Status

	Jan-08	Feb-08	Mar-08	Apr-08	May-08	Jun-08	Jul-08	Aug-08	Sep-08	Oct-08	Nov-08	Dec-08
Eureka	No	No	Yes	Yes	No	No	No		Yes	Yes	No	
Via Concha	No	No	Yes	No	Yes	Yes	No		No	No	Yes	
BL #3	Yes	Yes	No	No	Yes	Yes	Yes		Yes	No	No	
BL #4	Yes	Yes	No	No	Yes	Yes	Yes	1	Yes	No	No	
Sundale	No	No	No	No	Yes	Yes	Yes		No	No	No	
Bevington	No	No	No	No	Yes	Yes	No		Yes	Yes	No	1
Knollwood	No	No	Yes	Yes	Yes	Yes	Yes		Yes	Yes	No	
Olympic	No	No	No	No	Yes	Yes	Yes		Yes	Yes	Yes	
Mandi	No		No	No	No							
Cheyene	No		No	No	No							

Yes - Indicates well pumping at time of level measurement No - Indicates well not pumping at time of level measurement