SANTA BARBARA COUNTY STATE WATER PROJECT ALTERNATIVES

APRIL 1985

Southern District in cooperation with Santa Barbara County Flood Control and Water Conservation District

GEORGE DEUKMEJIAN, Governor

STATE OF CALIFORNIA

DAVID N. KENNEDY, Director DEPARTMENT OF WATER RESOURCES

GORDON K. VAN VLECK, Secretary THE RESOURCES AGENCY Copy of document found at www.NoNewWipTax.com

Santa Barbara County State Water Project Alternatives

Department of Water Resources Southern District In cooperation with

Santa Barbara County Flood Control and Water Conservation District

Copies of this report at \$4 each may be ordered from:

State of California DEPARTMENT OF WATER RESOURCES P. O. Box 6598 Los Angeles, CA 90055

Make checks payable to DEPARTMENT OF WATER RESOURCES. California residents add sales tax.

April 1985

GORDON K. VAN VLECK. Secretary THE RESOURCES AGENCY

DAVID N. KENNEDY, Director DEPARTMENT OF WATER RESOURCES

GEORGE DEUKMEJIAN, Governor STATE OF CALIFORNIA

Copy of document found at www.NoNewWipTax.com

FOREWORD

Through the years, Californians have recognized the need for maintaining a long-range perspective on the problems of keeping their water requirements and supplies in balance. In 1957, the Department of Water Resources released Bulletin 3, "The California Water Plan", as "a master plan to guide and coordinate the planning and construction by all agencies of works required for the control, protection, conservation, and distribution of California's water resources"

As part of its effort to update that plan, the Department in May 1981 released the report "Water Action Plan for the San Luis Obispo - Santa Barbara Counties Area". It contained information on existing and future water demands and existing and potential water supply sources, including conservation and water reclamation, and pointed out major problems and issues.

The purpose of the study described in this report is to provide the Santa Barbara County Flood Control and Water Conservation District with an analysis of local project options as alternatives to the County's direct use of State Water Project water, delivered via the Coastal Branch of the California Aqueduct. In this report, estimates of existing and future deficiencies are updated and potential sources of supplemental water are analyzed from economic, financial, and environmental standpoints. The most promising options, selected local projects supplemented by various Coastal Branch sizes, are analyzed in detail and grouped into various alternatives that are capable of providing the District with an amount of water equal to its entitlement from the State Water Project.

During the time that the Santa Barbara County State Water Project Alternatives study has been under way, the Department has become aware of increased financial stresses on State Water Project water users, which have resulted in increased emphasis on obtaining future water supplies at lower costs. The financial evaluation used in this report assumes that the other State Water Project contractors are willing and able to accept the repayment obligations resulting from the assumed level of State funding for the various local projects. Future discussions will be needed with the contractors to test this assumption.

From this analysis, local water agencies will be able to make informed decisions regarding the alternatives that best serve their mutual interests and needs.

James M. Stubchaer, Manager Santa Barbara County Flood Control and Water Conservation District

fack J. Coe, Chief Southern District Department of Water Resources

iji

·

. .

· ·

TABLE OF CONTENTS

Page
FOREWORD
ORGANIZATION, DEPARTMENT OF WATER RESOURCES
BOARD OF DIRECTORS, SANTA BARBARA COUNTY FLOOD CONTROL AND WATER CONSERVATION DISTRICT
STUDY COMMITTEES AND ACKNOWLEDGMENTS xii
CHAPTER I. INTRODUCTION
Background1 Objective
CHAPTER II. SUMMARY OF FINDINGS AND CONCLUSIONS
Summary of Findings
CHAPTER III. WATER DEMAND PROJECTIONS AND COMPONENTS OF EXISTING SUPPLY
Water Demand
CHAPTER IV. COMPARISON OF WATER DEMAND AND SUPPLY PROJECTIONS 37
Cuyamá Subarea

÷

TABLE OF CONTENTS (continued)

	Page
CHAPTER V. IDENTIFICATION OF WATER SUPPLY OPTIONS	53
State Water Project	53
Incorporation of Local Projects	56
Water Supply Options for Each Subarea	58
Cuyama Subarea	58
Santa Barbara Canyon Reservoir	58
State Water Project	58
Options Not Selected	62
Santa María Subarea	62
Round Corral Reservoir	62
Desalination of Sea Water	62
State Water Project	66
Ontions Not Selected	66
San Antonio Subarea	67
State Water Project	67
Ontione Not Solostad	67
Conta Voca Puberoa	67
	70
Contra Degenation Delenament (27 feet)	70
Cachoma Reservoir Entargement (22 feet)	00
Cachuma Reservoir Enlargement (55 feet)	00
Gachuma Reservoir Enlargement (42 feet)	80
New Gibraitar Reservoir	88
State Water Project	89
Salsipuedes Reservoir	89
Desalination of Sea Water	89
Options Not Selected	90
South Coast Subarea	90
Cachuma Reservoir (existing)	
With Conjunctive Use	90
Cachuma Reservoir Enlargement (27 feet)	
With and Without Conjunctive Use	90
Cachuma Reservoir Enlargement (33 feet)	
With and Without Conjunctive Use	90
Cachuma Reservoir Enlargement (42 feet)	
With and Without Conjunctive Use	90
New Gibraltar Reservoir With and	·
Without Conjunctive Use	90
Goleta Water Reuse	90
Santa Barbara City Regional Water Reuse	1.00
Desalination of Sea Water	100
State Water Project	101
Options Not Selected	101
CHAPTER VI. FORMULATION OF ALTERNATIVES	103
Alternative 1	106
Alternative 2	107
Alternative 3	107
Alternative 4	109

,

TABLE OF CONTENTS (continued)

Ŋ,

Alternative Alternative Alternative Alternative Alternative Alternative Alternative Alternative Alternative Alternative	5	109 109 109 110 110 110 110 110 111 111
Alternative	16	112
CHAPTER VII.	ALTERNATIVES FOR FURTHER CONSIDERATION	113
Cost Analysi Financial Co Future Decis	s nsiderations ion-making Process	113 125 130

SIDEBARS

.

Abbreviations and Def	initions	- 5
Methods for Agricultu	ral Conservation	25

APPENDIXES

Α.	Reference	s 								135
B.	1979-1982	Calender	Year	Average	Water	Üse	Condition	by	Areas	

TABLES

1.	Most Promising Water Supply Alternatives to Meet	
	Santa Barbara County Water Entitlements from the	
	State Water Project	12
2.	State Water Project Entitlement by Subarea	14
3.	Total Water Demand	19
4.	Santa Barbara County Water Production - Urban (M&I) Use	20
5.	Urban Water Demand	21
6.	Population Projections	21
7.	1980 Urban Per Capita Water Use in Santa Barbara County	22
8.	Urban Water Conservation	23
9.	Agricultural Water Demand	24
10.	Projected Irrigated Agriculture	24
11.	Agricultural Water Conservation	26
12.	Ground Water Storage Capacities	29
13.	Reservoirs in Santa Barbara County	29
14.	Santa Barbara County Waste Water Production and Reclamation	30
15.	Water Quality in Santa Barbara County	-33
16.	State Water Project Water Quality	34
17.	Cuyama Subarea Water Supply Balance	- 36
18.	Santa Maria Subarea Water Supply Balance	38
19.	San Antonio Subarea Water Supply Balance	40

TABLES

ŀ

(continued)

Page

20.	Total Santa Ynaz Subarea Water Supply Balance	42
21.	Lower Santa Ynez Subarea Water Supply Balance	44
22.	Upper Santa Ynez Subarea Water Supply Balance	45
23.	South Coast Subarea Water Supply Balance	46
24.	Water Supply Balance Without Supplemental Water Supply	48
25.	Water Supply Balance With a Supplemental Water Supply	48
26.	Total Santa Barbara County Water Supply Balance	50
27.	County Water Supply Balance Less Cuyama and San Antonio	51
28.	Summary of Cuyama Subarea Water Supply Options	59
29.	Summary of Santa Maria Subarea Water Supply Options	63
30.	Desalination of Sea Water by Reverse Osmosis	
	in Santa Maria Subarea	66
31.	Summary of San Antonio Subarea Water Supply Options	68
32.	Summary of Santa Ynez (Upper) Subarea Water Supply Options	71
33.	Summary of Santa Ynez (Lower) Subarea Water Supply Options	79
34.	Increased Yield and Cost of Conjunctive Use Operations	88
35.	Desalination of Sea Water by Reverse Osmosis	
	In Santa Ynez (Lower) Subarea	90
36.	Summary of South Coast Subarea Water Supply Options	91
37.	Desalination of Sea Water by Reverse Osmosis	
	In South Coast Subarea	100
38.	Estimated Costs of Santa Barbara County Water Supply Options	
	Ranked by Unit Cost Within Subareas	104
39.	Estimated Costs of Santa Barbara County Water Supply Options	
	Ranked by Yield Within Subareas	105
40.	Assumptions for SWP Charges	106
41.	Summary of Water Quality Penalty Costs	1.07
42.	Summary of Water Supply Alternatives to Meet SBCFCWCD	
	Entitlements from the State Water Project	108
43.	Future SWP Charges Assuming New Supplies Are Provided at Indicated	
	Annual Cost on a Schedule to Meet Water Supply Requests	114
44.	Summary of Water Supply Alternatives To Meet Santa Barbara County	
	Water Entitlements from the State Water Project	
	(Costs based on partial or complete funding of	
	local projects by the State Water Project)	122
45.	Summary of Water Supply Alternatives to Meet Santa Barbara	
	County Water Entitlements from the State Water Project	
	(Costs based on complete funding of local projects	
	by Local Bond Issues)	126
46.	Effect on Santa Barbara County of Reductions in Deliveries	
	of SWP Water to San Luis Obispo County	129

FIGURES

1.	California	State Water Project (SWP)	xiv
2.	Study Area	and Subareas	3
3.	1980 Santa	Barbara County Water Demand and Supply	9
4.	1980 Santa	Barbara County Water Demand by Type Use	18
5.	1980 Santa	Barbara County Water Demand by Subareas	19
б.	Existing Wa	ater Sources for Santa Barbara County	27

.

.

FIGURES (continued)

Page

7.	Santa Barbara County Water Resources and	
	Water Supply Facilities	28
8.	Water Demand and Supply for Cuyama Subarea	36
9.	Water Demand and Supply for Santa Maria Subarea	38
10.	Water Demand and Supply for San Antonio Subarea	40
11.	Water Demand and Supply for Santa Ynez Subarea	42
12.	Water Demand and Supply for Lower Santa Ynez Subarea	44
13.	Water Demand and Supply for Upper Santa Ynez Subarea	45
14.	Water Demand and Supply for South Coast Subarea	46
15.	Water Demand and Supply for Santa Barbara County	50
16.	County Demand and Supply Less Cuyama and San Antonio	51
17.	Proposed Coastal Branch of California Aqueduct	54
18.	Proposed Alignment of Santa Barbara County	
	Intra-County Distribution System (ICDS)	55
19.	Relative Water Quality of Water Supply Options	57
20.	Cuyama Subarea Water Supply Options	61
21.	Santa Maria Subarea Water Supply Options	65
22.	San Antonio Subarea Water Supply Options	69
23.	Santa Ynez (Upper) Subarea Water Supply Options	77
24.	Santa Ynez (Lower) Subarea Water Supply Options	78
25.	South Coast Subarea Water Supply Options	99
26.	Relative Cost Comparison of Cuyama Subarea	
	Water Supply Options	116
27.	Relative Cost Comparison of Santa Maria Subarea	
_	Water Supply Options	117
28.	Relative Cost Comparison of Lower Santa Ynez Subarea	_
	Water Supply Options	118
29.	Relative Cost Comparison of Upper Santa Ynez Plus	
	South Coast Water Supply Options	119
30.	Relative Cost Comparison of South Coast Subarea	
	Water Supply Options (Within South Coast)	120
31.	Relative Cost Comparison of All Water Supply	
	Options Available in South Coast Subarea	121
32.	Local Project Financing and Repayment	131
33.	Estimated work and Time Schedule Required for	110
	Future water Development in Santa Barbara County	ددى
00.UE		

COVER PHOTO: Looking northwest toward Santa Barbara County, with the City of Santa Barbara in the foreground and the Santa Ynez Mountains and Santa Ynez Valley in the background.

•

.

State of California GEORGE DEUKMEJIAN, Governor

The Resources Agency GORDON K. VAN VLECK, Secretary for Resources

> Department of Water Resources DAVID N. KENNEDY, Director

ALEX R. CUNNINGHAM, Deputy Director HOWARD H. EASTIN, Deputy Director

ROBERT E. WHITING, Deputy Director

SALLE S. JANTZ, Assistant Director

ROBERT W. JAMES, Chief Counsel

SOUTHERN DISTRICT

Jack J. Coe, Ph.D. District

This report was prepared under the direction of

Clyde B. ArnoldChief, Water Projects Branch

Ъy

Carlos Madrid Section A

Assisted by

Harry IwanagaAssociate Engineering Geologist Mansour HojabryAssociate Engineer Phyllis J. YatesResearch Writer Susie M. RamirezEditorial Aid Bettye WhitesideOffice Technician Dean WilsonSenior Delineator

Statewide assistance was provided by

Stephen H. ChanDivision of Design and Construction Roger R. LindholmDivision of Planning Steven C. MacaulayState Water Project Analysis Office Lawrence E. SwensonState Water Project Analysis Office Kenneth M. Turner.....Division of Planning

SANTA BARBARA COUNTY FLOOD CONTROL AND WATER CONSERVATION DISTRICT

 $\{ \dots \}_{i=1}^{n}$

BOARD OF DIRECTORS

Toru Miyoshi, Chairman, 1984

DeWayne Holmdahl, Chairman,	1983	Robert E. Kallman
William B. Wallace		David M. Yager

Assisting in the preparation of this report from Santa Barbara County Flood Control and Water Conservation District

Jon A.	Ahlroth	 	 		Hydrologi	ist
Marian	Кпарр .	 * • • • • • •	 	.Engineering	Assistant	II
Debra 1	L. Alves	 	 Word	Processing	Technician	ΙI

T

STUDY COMMITTEES AND ACKNOWLEDGMENTS

A Management Committee and a Technical Committee were formed at the beginning of the study to provide direction in the planning and to give technical assistance during the conduct of the study.

The management committee was made up of four members: two from the Department of Water Resources and two from the Santa Barbara County Flood Control and Water Conservation District and Santa Barbara County Water Agency. The Technical Committee was composed of representatives from the various water districts and cities in Santa Barbara County and Vandenberg Air Force Base. In addition to the two committees, Carlos Madrid of the Department of Water Resources managed and coordinated the study activities between the Department and the District and reported on the results of the study. Special acknowledgment is made of the efforts of James U. McDaniel (then Chief of the Statewide Planning Branch in the Department's Sacramento Office) and Richard E. Angelos (then Chief of the Water Projects Branch), who were instrumental in initial efforts to plan and scope this cooperative study.

Membership in the two committees consisted of the following personnel:

MANAGEMENT COMMITTEE

Robert G. Potter, Chief* Planning Branch & Program Manager Division of Planning Department of Water Resources

James M. Stubchaer Engineer-Manager Santa Barbara County Flood Control and Water Conservation District

Carlos Madrid** Water Projects Branch Southern District Department of Water Resources Jon A. Ahlroth Hydrologist Santa Barbara County Water Agency

> tary District

TECHNICAL COMMITTEE

James B. Dixon, City Engineer***	Robert R. Lieberknecht		
and Public Works Director	General Manager and Secre		
City of Lompoc	Carpinteria County Water		
Lloyd C. Fowler	Reese N. Riddiough, Direc		

General Manager Goleta Water District

C. Charles Evans General Manager Montecito Water District

Michael P. Hopkins Water Resources Manager Public Works Department City of Santa Barbara Reese N. Riddiough, Director Public Works Department City of Santa María

Thomas M. Petersen, Manager Santa Ynez River Water Conservation District Improvement District #1

Edward W. Rodgers, Chief Engineering and Contracts Branch Vandenberg Air Force Base

*Replaced James U. McDaniel in December 1983. **Replaced Richard E. Angelos in March 1984. ***Replaced by Lawrence McPheresonuminat October W1984k.com In addition to the valuable assistance and support provided by the two committees, who met monthly throughout the investigation, information and data from the offices of the State Department of Health Services and the County Farm Advisor were particularly helpful and are appreciated. The Division of Design and Construction of the Department of Water Resources also provided valuable assistance in the conduct of the study. A special expression of appreciation is directed to the public-at-large who participated in the three public information meetings and gave generously of their time and knowledge toward shaping the alternatives that were developed.

The entire water supply for Santa Barbara County comes from its local ground water basins and surface reservoirs; none is imported from outside the County. Therefore, to ensure a continuing supply, annual use of water should not, over the long term, exceed average annual replenishment by rainfall, runoff, and return flows. However, water demand in Santa Barbara County has increased over the years until it now exceeds annual replenishment by more than 65,000 acre-feet. This deficit is projected to continue to grow under the current water use practices.

This is a report on an investigation of possible ways and means to help meet the projected water demands economically. It takes a technical approach toward acquiring a water supply and does not address the political issues that would need to be considered and resolved before a specific water supply plan could be developed.

Background

Large ground water basins can often be utilized at a deficit for years without ill effects on either the water supply or the basin itself, but the Santa Barbara County ground water basins are small and many already show evidence of overpumping. The capacity of the surface reservoirs in Santa Barbara County is also limited. Because planning and development of new water supplies takes years before materializing into water deliveries, the citizens of the County are confronted with the need to make decisions now in order to provide a timely, good quality water supply.

The County's capacity to import State Water Project (SWP) water was first considered in the Department of Water Resources (DWR) 1963 Bulletin 119-21, "Feasibility of Serving Santa Barbara County Flood Control and Water Conservation District from the State Water Project." In that report, it was concluded that Santa Barbara County Flood Control and Water Conservation District (SBCFCWCD) had the economic justification and the financial capability required to enter into a contract with the State of California for the service of water from the planned facilities that would come to be known as the SWP. (See Figure 1.)

On the basis of that conclusion, a water supply contract was executed on February 26, 1963, between the State and SBCFCWCD for a maximum annual entitlement of 50,000 acre-feet, with a special provision for an additional 10,000 acre-feet per year (maximum), which SBCFCWCD would furnish to Vandenberg Air Force Base. Shortly thereafter, it was determined that SBCFCWCD would require a maximum annual entitlement of only 57,700 acre-feet per year, with initial deliveries scheduled to begin in 1980. Later, SBCFCWCD requested 8 reduction in its maximum annual entitlement, and on August 31, 1981, a contract amendment was signed to reduce SBCFCWCD's maximum entitlement to 45,486 acre-feet per year.

To deliver SWP water, the remaining 83 miles of the Coastal Branch of the Californía Aqueduct, through San Luis Obispo County to Santa Barbara County, would have to be completed. The cost of the Coastal Branch would probably be shared with the San Luis Obispo County Flood Control and Water Conservation District (SLOCFCWCD), which has contracted for 25,000 acre-feet per year of SWP water. However, either district can choose to reduce or decline delivery of SWP If one district chooses not to water. purchase SWP water, the other can request construction of the Coastal Branch sized to meet its needs. However, because of the effect of economy of scale, the unit cost of water from a downsized pipeline would be greater than that from the full size pipeline shared by the two counties.

Since SBCFCWCD and SLOCFCWCD contracted for the water, escalating costs and a desire by many to limit growth in the counties have given cause for reexamining the advisability of going ahead with the Coastal Branch. Therefore, both SBCFCWCD and SLOCFCWCD have requested and have been granted a number of postponements in beginning construction of the Coastal Branch. The latest delay will permit the districts to reevaluate their water supply needs and study the advantages Of . developing local water supply projects in conjunction with various sizes of the Coastal Branch.

It will also permit the exploration of funding partially or fully by the State under a concept described in the DWR "Revised Guidelines on Funding Local Water Supply Projects for Inclusion in the State Water Project," dated December 29, 1982, in lieu of delivery of all or part of their SWP entitlements. Under the guidelines, these local projects could be funded to the extent that they make possible the elimination or reduction of the proposed Coastal Branch and additional SWP conservation (storage) State participation in local facilities. projects will depend upon the also availability of SWP funds.

The water supply developed from local projects under the guidelines cannot exceed entitlement and would not the SWP eliminate the total shortfall in the County water supply anymore than would the 45,486 acre-feet entitlement. Some of the water deficit in the County would be mitigated through conservation in the use of water for both urban and agricultural purposes, but applied water conservation would not significantly affect the water shortage problem.

In an effort to help resolve Santa Barbara County's water supply problems and to provide guidance to DWR in its future plans for the Coastal Branch, DWR and SBCFCWCD entered into a cooperative agreement on January 21, 1983, to equally fund this joint study.

Objective

The objective of this investigation was to assess demand and to formulate alternative plans, on a reconnaissance basis, consisting of combinations of local projects and/or different capacity versions of the SWP Coastal Branch, that would have the potential to deliver 45,486 acre-feet of water annually to SBCFCWCD.

In the study, special consideration was given to projects that would provide the best quality of water. This is to improve the quality of both the water supply and the discharge water which, in turn, would improve the quality of the receiving ground water.

Similar alternative water supply studies are being made for San Luis Obispo County to assist the SLOCFCWCD in its future plans for the Coastal Branch. The selected alternatives and the decisions on the use of SWP water by the two districts will be brought together to help DWR, SBCFCWCD, and SLOCFCWCD in their future plans for the Coastal Branch.

Scope and Conduct

Previous studies, published data, and files of the Santa Barbara County Water Agency, SBCFCWCD, DWR, and other agencies (see listing in Appendix A) were depended upon heavily for information utilized in this reconnaissance study. Where information was out of date or not available, current data were developed by DWR and SBCFCWCD staff members in conjunction Technical Committee. Detailed with a concerning local projects and analysis alternatives investigated in this study, are available at the DWR and SBCFCWCD offices.

The County was divided into five basic subareas, as shown in Figure 2. These

Copy of document found at www.NoNewWipTax.com

subareas are similar to those described in DWR's May 1981, Southern District Report "Water Action Plan for the San Luis Obispo-Santa Barbara Counties Area". The subareas are:

- 1. Cuyama (portion within Santa Barbara County only) - included within the larger Santa Maria-Cuyama Drainage Basin.
- 2. Santa Maria (within Santa Barbara County only) - included within the larger Santa Maria-Cuyama Drainage Basin.
- 3. San Antonio,
- 4. Santa Ynez (lower and upper).
 - Lower is sometimes known as the Lompoe Valley.
 - Upper is sometimes known as the Santa Ynez Valley.
- 5. South Coast.

The division of the County into subareas facilitated an orderly, systematic approach for defining water demand and supplies and for evaluating the merits of local water supply options. Each water supply option was evaluated for further study according to its economic and engineering feasibility as a water supply project.

DWR was responsible for managing and coordinating the study, making preliminary designs and cost estimates for the Santa Ynez River dams and other potential projects, and evaluating the merits of the various water supply options. SBCFCWCD contributions included computer programming and using computer time to evaluate and compare various aspects of the projects, such as hydrology and unit cost of the options, estimating costs of various sizes of the SWP Coastal Branch, and doing word processing for the preparation of this report. The Technical Committee, consisting of the managers of major water purveyors within the County, reviewed the report at various stages of its preparation and made valuable comments and suggestions. Private citizens asked questions and made

worthwhile suggestions at public meetings, at which the scope and status of the report were discussed.

The water supply options were then grouped into various alternative plans that could provide 45,486 acre-feet per year of SWP water as contracted for by SBCFCWCD. The alternative plans were then evaluated and are presented here to assist the people of the several subareas in making decisions on a plan that could provide future water supplies.

This study did not consider the development of a water supply that would eliminate the total water deficit in all subareas. This was because the primary purpose of the study was to evaluate the alternatives that could deliver to SBCFCWCD its SWP entitlement and thus would be eligible for State financing. These alternatives would provide different levels of benefits and yields in each of the five subareas and, in each case, it was assumed that water development would be limited to the subarea's allocation of SWP entitlement.

Study Area

The study area, shown in Figure 2, consists of Santa Barbara County and does not include the small adjoining areas that are hydrologically connected to subareas in the County. The study area covers 2,700 square miles and is located in the Central Coastal Hydrologic Area.

Santa Barbara County is bordered on the north by San Luis Obispo and Kern Counties, on the east by Ventura County, and on the south and west by the Pacific Ocean. The County is traversed by mountain ranges that separate it into the four fairly distinct drainage areas that were used in this investigation as study subareas, with the division of the Santa Maria-Cuvama drainage basin into the Cuyama and Santa Maria Subareas. (See Figure 2.) Mountain ranges include the Sierra Madre, which parallels the porthern border of the County; the San Rafael, which traverses southeast to northwest through the center of the

County; and the Santa Ynez, which parallels the South Coast. Located in the northeastern mountainous region is the Los Padres National Forest.

There are four major drainage systems in Santa Barbara County. On the north is the Santa Maria-Cuyama watershed. which includes the Cuyama and Sisquoc Rivers: these join to become the Santa Maria River. The Santa Ynez River is the major stream in the central County, and its watershed extends from Ventura County on the east to the Pacific Ocean on the west. Between the western parts of the Santa Ynez and Santa Maria-Cuyama watersheds is the smaller San Antonio watershed. The area between the crest of the Senta Ynez Mountains and the ocean is composed of a number of small watersheds drained by steep intermittent streams and is known as the Santa Barbara watershed.

The climate is predominantly Mediterranean. Temperature patterns vary throughout the County. Average maximum temperature in July can range from the 60s along the coast to the 90s inland. Average precipitation is about 18 inches per year; however, it will range from less than 10 inches in the Cuyama Valley to more than 30 inches in the mountainous areas. Nearly 90 percent of the precipitation falls from November through April.

Santa Barbara, Santa Maria, and Lompoc are the largest of the five cities located in the County. They account for nearly 50 percent of the County's estimated January 1984 (by the California State Department of Finance) population of 320,400. Carpinteria and Guadalupe are the other cities. Much of the population lives in the unincorporated areas of Montecito, Goleta, Santa Ynez, Los Olivos, Solvang, Buellton, Mission Hills, Vandenberg Village, Vandenberg Air Force Base (VAFB), Los Alamos, Oreutt, Garey, Sisquoc, and New Cuyama.

Agriculture in the Cuyama, Santa Maria, San Antonio, Lompoc, and Santa Ynez Valleys and the South Coast is an important element of the County's basic economy. Military and space activities at VAFB, the University of California at Santa Barbara, research, light manufacturing, government, construction, and tourism are other major sources of the area's income.

Abbreviations Used in Report			
AF - Acte-foot of acte-feet	m g/L - Milligrams per lítre		
AFB - Air Force Base	O&M - Operations and Maintenance		
AFY and AT/YR - Acre-feet per year	SBCFCWCD - Santa Barbara County Flood Control and Water Conservation District		
CRWQCB ~ California Regional Water Quality Control Board	SLOCFOWED - San Luis Obispo County Flood Control and Water Conservation District		
CD - Conjunctive Use	SV - State Water		
DWR - Department of Water Resources	SWP - State Water Project		
EIR - Environmental Impact Report	SWRCB - State Water Resources Control Board		
gpa - Gallons per minute			
gpcd - Gallons per capita per day	District		
ICDS - Intra-County Distribution System	TDS - Total dissolved solids		
kWh - kilowatthours	TH - Total hardness		
MFL - Million fibers per litre	THM e - Trihalomethanes		
MCD - Million gallons per day	USBR - United States Bureau of Reclamation		
M&I - Municipal and Industrial	VAFE - Vandenberg Air Force Baac		

Definitions of Terms Used in Report

- ACRE-FOOT The quantity of water required to cover one acre to a depth of one foot; equal to 43,560 cubic feet, or 325,851 gallons.
- APPLIED WATER DEMAND The quantity of water that would be delivered for urban or agricultural applications if no conservation measures were in place.
- ARTIFICIAL RECHARGE The addition of water to a ground water reservoir by human activity, such as irrigation or induced infiltration from streams, wells, or recharge basins. See also GROUND WATER RECHARGE, RECHARGE BASIN.
- BRACKISH WATER Water containing dissolved minerals in amounts that exceed normally acceptable standards for municipal, domestic, and irrigation uses. Considerably less saline than sea water.
- CONJUNCTIVE USE The operation of a ground water basin in coordination with a surface water storage and conveyance system. The purpose is to recharge the basin during years of above-average water supply to provide storage that can be withdrawn during drier years when surface water supplies are below normal.
- CONSERVATION As used in this report, <u>urban water conservation</u> includes reductions realized from voluntary, more efficient, water use practices promoted through public education and from State-mandated requirements to install water-conserving fixtures in newly constructed and renovated buildings. <u>Agricultural water</u> <u>conservation</u>, as used in this report, means reducing the amount of water applied in irrigation through measures that increase irrigation efficiency. See NET WATER CONSERVATION.
- CRITICAL DRY PERIOD A series of waterdeficient years, usually an historical period, in which a full reservoir storage system at the beginning is drawn down (without any spill) to minimum storage at the end.

- CRITICAL DRY YEAR A dry year in which the full commitments for a dependable water supply cannot be met and deficiencies are imposed on water deliveries.
- DESALTING A process that converts see water or brackish water to fresh water or an otherwise more usable condition through removal of dissolved solids. Also called "desalination".
- FIRM YIELD The maximum annual supply of a given water development that is expected to be available on demand, with the understanding that lower yields will occur in accordance with a predetermined schedule or probability.
- **GROUND WATER** Water that occurs beneath the land surface and completely fills all pore spaces of the alluvium or rock formation in which it is located.
- **GROUND WATER BASIN** A ground water reservoir, together with all the overlying land surface and underlying aquifers that contribute water to the reservoir.
- **GROUND WATER MINING** The withdrawal of water from an aquifer greatly in excess of repleaishment; if continued, the underground supply will eventually be exhausted or the water table will drop below economically feasible pumping lifts.
- GROUND WATER OVERDRAFT The condition of a ground water basin in which the amount of water withdrawn by pumping exceeds the amount of water that replenishes the basin over a period of years.
- GROUND WATER RECHARGE Increases in ground water by natural conditions or by human activity. See also ARTIFICIAL RECHARGE.
- GROUND WATER STORAGE CAPACITY The space contained in a given volume of deposits. Under optimum use conditions, the usable ground water storage capacity is the volume of water that can, within specified economic limitations, be alternately extracted and replaced in the reservoir.

- **GROUND WATER TABLE -** The upper surface of the zone of saturation (all pores of subsoil filled with water), except where the surface is formed by an impermeable body.
- MILLIGRAMS FER LITRE The weight in milligrams of any substance dissolved in one litre of liquid. Nearly the same as parts per million. Abbreviation: mg/L.
- NET WATER CONSERVATION The difference between the amount of applied water conserved and the amount by which this conservation reduces usable return flows.
- NET WATER DEMAND The applied water demand less water saved through conservation efforts (= net applied water = actual water used).
- **PERCOLATION** The downward movement of water through the soil or alluvium to the ground water table.
- RECHARGE BASIN A surface facility, often a large pond, used to increase the infiltration of water into a ground water basin.
- **RECLAIMED WATER -** Urban waste water that becomes suitable for a specific beneficial use as a result of treatment.
- **RETURN FLOW** The portion of withdrawn water that is not consumed by evapotranspiration and returns instead to its source or to another body of water.

REUSE - The additional use of once-used water.

- SAFE YIELD (GROUND WATER) The maximum quantity of water that can be withdrawn from a ground water basin over a long period of time without developing a condition of overdraft. Sometimes referred to as sustained yield.
- SALIMITY Generally, the concentration of mineral salts dissolved in water. Salinity may be measured by weight (total dissolved solids), electrical conductivity, or osmotic pressure. Where see water is known to be the major source of salt, salinity is often used to refer to the concentration of chlorides in the water. See also TOTAL DISSOLVED SOLIDS.
- SEA WATER INTRUSION The movement of salt water into a body of fresh water. It can occur in either surface water or ground water bodies.
- TOTAL DISSOLVED SOLIDS A quantitative measure of the residual minerals dissolved in water that remain after evaporation of a solution. Usually expressed in milligrams per litre. Abbreviation: TDS, See also SALINITY.
- WATER RECLAMATION The treatment of water of impaired quality, including brackish water and sea water, to produce a water suitable for the intended use.
- WATER RIGHT A legally protected right to take possession of water in a water supply and to divert that water for beneficial use.

CHAPTER II. SUMMARY OF FINDINGS AND CONCLUSIONS

Summary Of Findings

Among the salient points that came from the information developed in this and previous studies are the following:

- 1. The population in Santa Barbara County is projected to increase from 299,000 in 1980 to 368,000 by 2010; irrigated agricultural land is projected to increase from 94,000 acres in 1980 to 101,000 acres in 2010.
- 2. Assuming that present trends prevail, the projected annual applied urban water demand after conservation would rise from 71,000 to 79,000 acre-feet per

year (AFY) between 1980 and 2010, while applied annual agriculture demand after conservation would drop slightly from 213,000 AFY in 1980 to 205,000 AFY in year 2010. Therefore, total water demand after conservation would remain constant at about 284,000 AFY between 1980 and 2010. The 1980 demand and supply for each subarea and for the whole county are displayed in Figure 3.

3. The estimated dependable supplies of the County (surface water, tunnel infiltration, ground water, and reclaimed water), after taking into account effects of conservation on return flows,

would drop from 219,000 AFX in 1980 to 216,000 AFY in 2010.

4. Thus the Countywide dependable water supply, which was 65,000 AFY short of meeting the total 1980 net water demand*, will be 68,000 AFY short of meeting the projected total net water demand in 2010. The 1980 shortage of 65,000 AFY was made up of the following shortages:

Cuyama Subarea 20,000 AFY; Santa Maria Subarea 22,000 AFY; San Antonio Subarea 12,000 AFY; Santa Ynez Subarea 7,000 AFY; and South Coast Subarea 4,000 AFY.

- 5. The difference between demand and dependable supply is being met by longterm overdraft of the ground water basins and, to a much lesser extent, by use of excess water accumulated in surface reservoirs during wet years. Long-term overdraft of the ground water basins has caused ground water level declines and gradual water quality degradation in many parts of the County, especially in the Cuyama, Santa Maria, and lower Santa Ynez Subareas.
- 6. All new water supplies identified to date are much more expensive than present supplies.
- 7. To meet the anticipated future shortage, the SBCFCWCD, on February 26, 1963, contracted for SWP water. On August 31, 1981, the initial contract for 57,700 AFX of entitlement was reduced to 45,486 AFY. All this entitlement is assumed to be for municipal and industrial uses and not for agricultural use. However, agricultural water users would benefit indirectly from any development of an additional supply.
- 8. Completion of the SWP's Coastal Branch would provide the facilities to deliver the SWP water to Santa Barbara County, as well as to San Luis Obispo County. However, both counties have

requested and have been granted delays in beginning construction of the Coastal Branch.

- 9. As outlined in the "Revised Guidelines on Funding Local Water Supply Projects for Inclusion in the State Water Project", December 29, 1982, SWP funds and energy might be available for at least partial funding and power requirements of local supply projects. Specific engineering, economic, financial, environmental (including water quality), and institutional criteria would have to be met. The water supplied by the local projects would be delivered in lieu of SWP water from the Delta through the California Aqueduct and the Coastal Branch, Also, SWP funds would have to be available for such a program. Local projects could be used to supply the entire SWP entitlement to water or only a portion of the SWP entitlement, and the remainder could be supplied via a downsized Coastal Branch. It should be noted that further evaluation of the guidelines will continue, along with the examination of methods of financing future SWP features, which include local projects, because of the present uncertainties regarding SWP funds.
- 10. The following local projects, by subarea, have been selected as the most practical potential water supply options which could develop water within Santa Barbara County. While the listed local projects have potential within various subareas, some may not be economically feasible or competitive with imported water. Some also have water quality problems and potential for causing significantly adverse environmental impacts.

Cuyama Subarea

Santa Barbara Canyon Reservoir

Santa Maria Subarea

Round Corral Reservoir

Equal to applied water use less effects of water conservation efforts.

Desalination of sea water

San Antonio Subarea

None

Santa Ynez Subarea (upper and lower)

Cachuma Reservoir (existing) plus conjunctive use *

Cachuma Dam enlargement (27-, 33-, or 42-foot increase in water surface elevation) plus conjunctive use. *

New Gibraltar Reservoir plus conjunctive use. *

Santa Ynez Subarea (lower only)

Salsipuedes Reservoir

Desalination of sea water

South Coast Subarea

Cachuma Reservoir (existing) plus conjunctive use.**

Cachuma Reservoir enlargement (27-, 33-, or 42-foot increase in water surface elevation) plus conjunctive use.**

New Gibraltar Reservoir plus conjunctive use.**

Goleta water reuse

Santa Barbara City regional water reuse

Desalination of sea water

11. Combinations (referred to as alternatives) of these local water supply options, with or without a downsized Coastal Branch, could be developed to deliver SBCFCWCD's 45,486 AFY of SWP entitlement in accordance with the SWP contract and DWR policy.

- 12. The four water supply alternatives that were found to be the least costly are Alternatives 11, 12, 13, and 16, which are described in Table 1. For comparison, Alternatives 14, which develops Gibraltar plus conjunctive use, and 15, which delivers SWP water, are also described.
- 13. Determination of the least cost alternatives was based on April 1984 United States Bureau of Reclamation (USBR) Construction Cost Indices and economic. financial, and repayment considerations and formed a basis for comparison of alternatives. Considerable effort was expended in developing the best cost data based on past studies and some new evaluations, such as those done by DWR (local projects on the upper Santa Ynez River system, desalination of sea water, and water reuse project at Goleta) and SBCFCWCD (Branch Canyon, Santa Barbara Canyon, and San Antonio Creek Reservoirs). The actual costs, methods of financing and repayment, and allocation of costs will be the subject of further discussions among SWP water supply contractors, SBCFCWCD, its member agencies. SLOCFCWCD, and DWR, as specific projects, or options, are identified.
- 14. In addition to the options included in the alternatives in **Table 1**, water conservation, watershed management, and weather modification programs were considered important.
- 15. Before any of the alternatives or their components can be implemented, SBCFCWCD must inform DWR as to its preferred alternative or other water supply option and DWR must determine its feasibility based on engineering, economic, financial, legal (local water

 Delivery of Santa Ynez River water from a reservoir in the upper watershed to the lower Santa Ynez Subarea would require a pipeline from Cachuma Reservoir to Lompoc.
 **Water development shared between Santa Ynez and South Coast Subareas.

TABLE 1

MOST PROMISING WATER SUPPLY ALTERNATIVES TO MEET SANTA BARBARA COUNTY

ж 2 WATER ENTITLEMENTS FROM THE STATE WATER PROJECT

(Unit Cost in \$/AF; Annual Cost in \$/Yr)

SUBAREA (SWP Entitlement)	Alc.#11, & LST; /	SW to All ele	Cu,SMV,SA, E Lacil	A11.412, 5 LST; A	SW to (11 ele	Cu,SMV,SA, Local	41£.#I3, 5 197;	SW to All els	CL,SMV,SA, e Local	Alt.#14, & 15Y; /	SW to (Cu.SNV.SA, e Local	Alt. Partici	413, SW ipating.	to All. Furveyors	Al:.#16 & VAFB	. SW to <u>. All el</u>	Cu,SMV,SA, ae_Locel
Water supply option	Asoust AT?	Dait cost	Annual cost	Anount ATT	Unit cost	Acmual cost	Ano unt AFY	Unit cost	Acmuel cost	Amount APT	Unit coet	Aconel cost	Amoont AFT	Cost	Annual cost	Anount ATY	Cost	Anneal cost
CUYAMA (1,600)	اد هن که هه ا		64 3484114 4	***	• - 1 × 1 1 • •			<u>≈</u>			*****	┇┍┪┇┇╻_{┍┍┍┍}╻╻						
Santa Barbara Canyon Reservoir State Water Project	0 1600	0 1119	0		0 1119	0	6 1600	0 1119	0 1750400	0 1600 	0 1119 	0 1799400	0	0	0 1790400	0 1600	0 1119 	0 1790400
105419 					1119 			1119	1730400 1730400		1117 •••••••	1/70400 	1500	1619 		100V	1115	
Round Correl Reservoir Desalination of Servater State Water Project Totals	0 0 16850 15850	0 462 462	0. 0 7784700 7784700	0 0 16850 	0 0 462 	0 0 7784700 7784700	0 16850 16850	0 0 475 475	0 8003730 8003750	0 0 16850 16850	0 0 462 462	0 7784760 7784700	0 16850 16850	0 430 	0 0 7245500 7245500	0 0 16850 16850	0 0 485 	0 0 8172250 8172250
SAN AFTONIO (23)				·} ·	**** **						****	▝▋▋▋▋▋▋▋▋				*****	******	
State Water Project	23	630	14490	23	630	14490	23	674	15502	23	630	14490	23	598	13754	23	700	16100
SANTA YNEZ, LOWER (12,000)	- transford ar ni 32-di	*****	**********	┕╶╬╼┱┱╇┹══	estiji.		Cechuma	(42ft)	Couj. Dae	· ₩₽₩ ₽Ŧ₩Ÿ₩ 	¥ ₽₽₩₩ ₩	┺╬╫╬╩╝ <u>╖╪┲</u> ┺				Cachuma	(42ft)	Conj. Dae
Gibraltar + Lompoc Pipeline Cathuma + Lompoc Fipeline Salsipuedas Reservoir Desalination of Seguater	0 0 0	9 0 0 0	- C D D	0 0 0	0 0 0	0 0 0	0. 2477 0 0	0 830 D 0	0- 2105450 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 4500 0 0	0 659 0 0	0 2963500 0 0
State Water Project	12000	725	8700000 	12000	725	8700000 	9523	766	7294618	12000	725	8700000	12000	693 	8316000	12000	715 	5362500
SANTA THEY INPER (7.578)	Cecham	(27 ft)	Cooi. De	Gachum	== **** = (33Er)	Coni. Use	Cachuma	(42 ft)	Con i. Use	New Gibr	**** altar.	Coui. Une		******		Cechum	(42 ft)	≓veenee. Coni. Use
New Gibraltar Reservoir Existing Cachuma, Conj. Dee Eularged Cachuma Reservoir State Water Project	0 0 2578 0	0 0 126 0	0 D 324828 0	0 0 2573 0	0 0 140 D	0 0 360920 0	0 0 2578 0	0 0 171 0	0 0 440838 0	2578 0 0 0	427 0 0	1100806 0 0 0	0 0 2578	0 0 0 689	0 0 2139740	0 0 2578 0	0 0 171 0	0 0 440 8 38 0
Totals	2578	126	314828	2578	14D	360920	2578	17L	440838	2578	427 	1100806	2578	630	21.39740	2578	171	440838
SOUTH COAST (12,435)	Cachume	(27ft)	Cooj. Use	Cechuma.	(33ft)	Cooj. Tee	Cachume	(42ft)	Conj. Dee	New Gibr	alter,	Conj. Use				Gachume	(42 ft)	Conj. Dee
New Gibraltar Reservoir Existing Cachuma, Gonj. Use Enlarged Cachuma Reservoir Golets Water Reuse SB Legional Water Reuse Desglination of Semuter State Water Project Totals	0 0 10942 845 648 0 0 12435	0 126 1737 1177 0 0 290	0 1378692 1467765 762696 0 0 3609153	0 12435 0 0 0 0 12435	0 0 140 0 0 0 140	0 0 1740560 0 0 0 0 1740900	0 12435 0 0 0 0 12435	0 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 9 2126385 0 0 0 0 0 2126385	10542 0 0 1052 841 0 	427 0 0 1151 1211 0 543	4501434 0 9 1210852 1018451 0 6730737	0 0 0 0 124 15 124 15	0 9 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0 0 0 0 0 10942800 10942800	0 0 10412 0 2023 0 12435	0 0 171 0 1135 0 	0 0 1780452 0 2296105 0 4076557
COUNTWIDE (45,486) Totals	45486	489	21223571	45486	448	20391410	45486	479	21776943	45486	574	26121133	45486	669	30448194	45486	502	22824145

rights), and institutional considerations and their environmental impact. If a Santa Ynez River system project is selected, agreement as to its yield and distribution of other project yields on the river system must be reached among all affected parties. In addition, DWR, in cooperation with the SWP water supply contractors, must determine its method of financing and whether it fits into the overall SWP future facilities financing program. If it meets these criteria, DWR must also determine the method of repayment. Moreover, SWP financing of local projects is subject to availability of funds and requirements construction of future for SWP . facilities.

16. The development of an alternative to supply and deliver water to Santa Barbara County water purveyors could not be realized for 7 to 10 years after a decision is reached by all parties.

Conclusions

On the basis of findings in this study, the following conclusions can be drawn:

- 1. Santa Barbara County has a current and long-term water shortage, which could have adverse consequences.
- 2. Delivery of SBCFCWCD's full entitlement of SWP water, whether via the Coastal Branch or local supply projects, will not meet Santa Barbara County's entire projected shortage. However, if delivered to subareas in the quantities presently allocated (Table 2), the total shortage would be concentrated in the Cuyama and San Antonio Subareas. There are no local projects in these subareas that could make up the projected deficits.
- 3. If the ground water basins continue to be overdrafted, deterioration in ground water quality will persist, particularly in Cuyama, Santa Maria, and lower Santa Ynez Subareas. In coastal sections, it could cause sea water

intrusion. Moreover, a continued decline in water levels means an increase in pumping costs.

- 4. Water conservation is one way to help Santa Barbara County decrease its water supply deficit, but conservation alone cannot significantly affect the supply and demand balance.
- 5. Continued emphasis should be placed on on-going watershed management and weather modification programs as a desirable means of developing additional water in the County.
- 6. The importation of good quality SWP water would result in better quality effluent from waste water treatment plants and would improve the quality of the receiving ground water in northern subareas. Although the SWP entitlement water is not scheduled for direct agricultural use, agricultural water users would benefit from its importation. The amount of ground water available for agriculture would increase both from increased return flows and from less pumping for municipal and industrial uses. This would result in higher ground water levels than would otherwise occur, and this would decrease the pumping lift for ground water users, thereby saving energy costs.
- 7. In the South Coast and upper Santa Ynez Subareas, imported water is not economically competitive with local projects partially financed by the SWP.
- 8. In the Cuyama, Santa Maria, and San Antonio Subareas, no local projects are economically competitive with imported water.
- 9. In the lower Santa Ynez Subarea, local projects are economically marginal when compared with imported water.
- 10. The enlargement of Cachuma Reservoir by raising Bradbury Dam 27, 33, or 42 feet and the building of a New Gibraltar Reservoir, plus conjunctive

TABLE 2STATE WATER PROJECT ENTITLEMENT BY SUBAREA

SUBAREA Agencies	Amounts, in acre-feet per year
CUYAMA Cuyama Community Services District Cuyama Valley Community, Inc. Subarea Total	1,000
SANTA MARIA City of Santa Maria Southern California Water Company (Orcutt) Reserved SWP entitlement Subarea Total	11,300 3,000 <u>2,550</u> * 16,850
SAN ANTONIO Casmalia Community Services District Subarea Total	2323
SANTA YNEZ <u>UPPER</u> Buellton Community Services District Santa Ynez River Water Consv Dist, ID #1 Subtotal <u>LOWER</u> City of Lompoc Mission Hills Community Serv Dist Vandenberg Air Force Base (VAFB) Subtotal Subtotal Subtotal Subtotal Subarea Total SOUTH COAST Carpinteria County Water District Goleta Water District La Cumbre Mutual Water Company Montecito Water District Morehart Land Company City of Santa Barbara Santa Barbara Research Center Summerland County Water District Subarea Total SBCFCWCD TOTAL	$ \begin{array}{r} 578 \\ 2,000 \\ 2,578 \\ 4,000 \\ 500 \\ 7,500 \\ $
 * 2,050 acre-feet originally allocated to G originally reserved for VAFB are shown as in the Santa Maria Subarea. ** Original request for 8,000 acre-feet has *** Original allocation of 5,050 acre-feet ha pending results of the June 1985 election 	oleta and 500 acre-feet 'Reserved SWP Entitlement' been reduced as shown. s been reduced as shown, n on retaining entitlement.

use in both cases, are the main options for the upper Santa Ynez and South Coast Subareas in terms of least cost alternatives.

11. The only significant potential for reclaiming water is in the South Coast Subarea, because its treated waste water is discharged through outfalls to the ocean and is lost as a source of supply. However, because of the large amount of energy required for treatment and the necessity to provide a Separate distribution system, reclamation is an expensive source for water with limited uses. In the other four subareas, the effluent from waste water treatment plants and septic tanks largely returns to the ground water basins and is not lost.

12. An early decision on the alternative to be considered by all parties is desirable because of the long lead time (7 to 10 years) required to analyze, plan, and construct supply and delivery facilities.

SANTA BARBARA COUNTY contains both agricultural and urban areas. In upper photo is scene in Cuyama Subarea, taken near the community of New Cuyama. Lower photo shows the City of Santa Barbara in the South Coast Subarea. The City is the county seat and largest city in the County.

Copy of document found at www.NoNewWipTax.com

.

CHAPTER III. WATER DEMAND PROJECTIONS AND COMPONENTS OF EXISTING SUPPLY

This report summarizes and updates water demand and supply information that has been developed by the Santa Barbara County Water Agency, the State, the SBCFCWCD, other local agencies, and consultants. The purpose of the updating is to define the adequacy of current water supplies in terms of anticipated water demands and to determine the extent to which any deficits could be offset by local projects, a combination of local projects and a downsized Coastal Branch, or the importation of the full SWP entitlement. Water demand and water supply have been projected to the year 2010 by subarea.

As is pointed out in DWR's Bulletin 198-84, "Water Conservation in California", in order to plan future water development properly, the effect of conservation on future water use must be considered. The way in which conservation programs will affect the supply and use of water is not always obvious. Water does not disappear when it is used; in most cases, some of it can be recovered and used again. Thus, a reduction in water use will not always result in a real saving of water.

Water is lost to further use when it flows to the sea or a salt lake, seeps to a body of saline ground water, or passes into the atmosphere. A reduction in these losses is a water supply saving.

Whether or not a particular conservation measure will result in a water supply saving depends on where the water is being used. Just over half of the water delivered by urban water utilities in California is used indoors for washing and for flushing toilets. Virtually all this water is collected by sewers, treated, and then discharged to a river, the sea, or land disposal areas. In areas where sewage effluent is discharged to rivers or percolation ponds and becomes part of the supply, a reduction in indoor use will not be a water supply saving because it will reduce the supply. However, when the sewage effluent is discharged to the sea or to a river or an estuary when there is no downstream use, reductions in indoor use will be water supply savings because no downstream users will be affected.

Much of the water used for watering lawns and gardens is lost to the atmosphere. Reductions in this consumptive use will be water supply savings. Some of the water used on gardens runs off and eventually flows into storm drains. Reductions in this runoff of excess water will be water supply savings only when water from the storm drains is discharged to the sea or is otherwise lost to further use.

When water is used for irrigation, some is lost to the atmosphere as transpiration from the crop and evaporation from the soil surface, some runs off the end of the field. and some seeps into the ground. In most cases, the water that runs off the end of the field and seeps into the ground is available for use elsewhere. Most improvements in irrigation practice do not affect the amount of water lost to the atmosphere. Consequently, reductions in applications of irrigation water will not generally result in water supply savings. Real savings in the amount of water used in agriculture can be achieved only by changes in the crops grown and improvements in irrigation practice in places where runoff and seepage go to the sea, a salt lake, a body of saline ground water, or is otherwise unusable.

Water Demand

Urban and agricultural use are the main categories of water demand. Of the combined net urban and agricultural applied water demand in 1980, 75 percent was for agriculture and 25 percent was for urban use. Urban water use in 1980 was about 5 percent higher than in the mid-1970s, even though there was some retrofitting of water-saving devices in older homes and the mandatory installation of water-conserving equipment in new houses. The urban water use increase simply seems to have run in proportion to the increase in population (although five years is probably too short a period in which to obtain an accurate estimate of water use trends).

The 1980 countywide water demand to support both urban and agricultural activities is shown in Figure 4 and is summarized for 1980 to 2010 in Table 3. Figure 5 shows 1980 water demand by subareas.

Urban Water Demand

In this study, urban demand is defined as the water demand other than instream use and agricultural irrigation, whether in rural or city environment, and includes domestic, commercial, and industrial water uses. Under the assumption that only water from the current supply would be available, water demand was projected to the year 2010 on the basis of population projections and per capita water use. With more water available, population and water demand might be slightly higher, but this is not entirely predictable, as by far most of the water used in Santa Barbara County is for agriculture.

Table 4 shows eight calendar years of urban water production by subarea and purveyor. The urban water use shown in this table represents almost all urban or domestic water use in Santa Barbara County.

Future urban water demand in Santa Barbara County, based upon population and per capita water use, is shown in **Table 5**. A breakdown of urban demand and conser-

-

C

.

TABLE 3 TOTAL WATER DEMAND

In acre-feet per year

Item	1980	1990	2000	2010
Total urban/agricultural unadjusted water demand	307,100	323,650	329,720	331,100
Total urban/agricultural existing and anticipated conservation*	- 22,900	~ 36,450	- 42,920	- 46,800
Total urban/agricultural water demand	284,200	287,200	286,800	284,300

because of the effect conservation has on supply, i.e., reducing return flows.

Cuyama 28,900 (10%)Santa Maria 111,600 (39%) San Antonio 19,800 (7%) Lower Santa Ynez 37,600 (13%) Upper Santa Ynez 34,200 (12%)South Coast 52,100 (18%)Total 284,200 AFY Units: Acre-feat per year Figure 5. 1980 SANTA BARBARA COUNTY WATER DEMAND BY SUBAREAS

			TAI	BLE ⁴				
SANTA	BARBARA	COUNTY	NATER	PRODUCTION	-	URBAN	(M&I)	USE
		In .	асте бо	eet ber vear				

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	*********				*****					****
VATOR CLEARE BUDGEVODC	1075	1076	1077	CALENDAR	16AKS	1 1 980	T 1091	1	4 IT+ AVE 1975-78	4 YI+AVE. 1979-87
MAJUK WAIBA FUAVGIURD			17.7	1970		1,200				1777-02
New Cuyama	288	300	321	300	295	292	333	262	30.2	29.6
Cuyama	75	75	75	75	75	75	75	75	75	75
Ventucopa & Misc.	9	9	9	9	9	9	9	9	9	9
SUBTOTAL, CUYAMA	372	384	405	384	379	376	417	346	386	380
1977 - Contro Maria	a <i>ne 1</i>	seree <del>tser</del> ern o	7 500	22222222557	e ita	8388888888 1995 0	CECEEEE###	2 713	# <del>]                                   </del>	0 /20 0 /20
SaCalif Her Ca (Oren+tCiae)	0,00J 2 TRA	A G14	5 , JUS 6 676	A 750	6 947	5 250	3 851	5 390	6 127	0,420 5 707
City of Cuedelupe	3,700 R50	4,014 845	787	4,333	4,04J	762	719	675	9,1.77	2,357 710
Lake Maria Water Co	tá 3	316	375	262	252	259	238	195	274	776
Migr. SM Walley & Industrial	7 450	7.400	7.400	7 450	2.650	8 090	7 000	6.300	7.425	7 260
SUBTOTAL, SANIA MARIA	20,286	20,608	20,539	20,239 -	- 21,557	23,214	22,448	20,782	20,418	22,000
Los Alamoa Coma.Serv.Dist.	150	158	158	161	205	230	211	211	157	214
Surrounding Ranches (private)	80	80	80	80	80	80	80	80	30	80
Gasmalia	16	16	17	15	16	17	27	27	16	22
SUBTOTAL, SAN ANTONIO	246	254	255	256	301	327	318	318	253	316
Gity of Lemnet	3.301	3.314	3.300	3.173	3.573	3.775	3.654	3.632	3, 272	3,659
Vandenberg Air Force Base	3.898	4,392	4,455	4.021	4,096	4,831	5.076	4,781	4, 192	4,696
ParkWtrCo.(VanVil.&GolfCor)	1,777	1,678	1,804	1,649	1,870	1.877	1.944	1,651	1.777	1.836
Mission Hills Wtr.Co.	493	500	500	500	500	583	492	417	498	498
Misc. Lower Santa Ynez	150	150	- 155	160	165	155	165	165	154	165
CERTOTAL INTER CANTA THE *	n 210	in 294	10.214	0 503	10 205	11 231	11 291	10 666	0 80.2	10 952
- Jejsessessan and antes ing				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	**************************************			10,040	, 075 	
SY Riv.Wtr.Coms.Diet.ID≢1	1,238	1,221	1,072	1,077	1,203	1,256	1,219	1,108	1,147	1,197
Solvang Num , Emprov. Dist.	1,200	1,264	1,198	1,098	1,122	1,231	1,622	1,569	1,190	1,386
Buellton Comm.Serv.Dist.	450	535	528	641	716	752	770	725	539	741
Misc. Hyper Santa Yuez	500	530	560	580	6 <b>0</b> 0	605	610	013	543	606
SUBTOTAL, UPPER SANTA THEZ	3,368	3,550	3,358	3,396	3,641	3,844	4,221	4,012	3,410	3,930
Cern.Co.Wtr.Dist.	7 (138	2.233	1,907	1.887	2.029	2.065	2.268	2.140	2.015	7, 176
Summerland Co.Wir.Dist.	150	162	131	127	109	137	113	110	143	117
Monterito Weter District	3.806	3.546	3.213	2,960	3.358	3.599	3.800	3.112	3,381	3.467
City of Santa Barbara	15.854	14.665	12.917	12.585	13.954	14.750	14.305	13,330	14.006	14.085
Goleta Water District	11.200	12,361	10,665	11,112	11,971	12,018	11,731	10,401	11,335	11,530
La Cembre Mutual Wir.Co.	1.593	1.505	1,408	1,340	1,396	1.525	1,357	1,248	1,462	1,382
Misc,South Coast Areas	855	875	875	895	905	915	920	920	875	915
SUBTOTAL SOUTH COAST	35.496	35.347	31.111	30.907	33,722	35.009	34.494	31.261	33.215	13.622
						LE 1992 9 7 7 7 7				*****************
TOTAL URBANIZED AREA OF SANTA RADBARA COUNTY	69.387	70 . 377	65.882	64.685	69.804	74.001	73.229	67.365	67.583	71,100
ALMAN DERAFING COMMAN						,		~	··· , .~	

╡ ┫╔╅┲┽╡╬╪╪╪╪╪╕╕┺┺┲╕╘╘┲┲╍╌╕╒╪╤┿┇┇╬┇╪╪┧╔┡┲┿┢┲╔╓┱┑┰┑╕╖╕╡┿╡┇┇┲┲┲╕╕┸┸┺╨┲╡╪╪┧╔┲╗┲╴╗┸┺┲╄╄╪┼╡╡┎┲┲┲┲╄╄┿╒┲╖┲┺┱┺┾╄┿╒┲╖┲┺┱┱╸╘ ╴

NOTES: 1. All values are in AFY and are derived from monthly and annual production figures supplied to the Water Agency by the various water purveyors.

The City of Santa Barbara and Goleta Water District Figures are adjusted in their annual production values by the amount of the City exchange value.
 Goleta Water District is further adjusted by the amount delivered to La Cumbre Nutual Water Company each year.

4. The Santa Ynez ID#1 and Solvang Municipal Improvement District values are adjusted to reflect the deliveries from ID#1 to SMID.

5. Vandenberg Village (Park Water Co.) use is sugmented by the estimated goli course water use (330 AFY in 1975 to 360 AFY in 1982).

6. Water Purveyors are grouped into Subareas where principal use occurs. Sources of water may be from other areas (as per Casmalia 5 Vandenberg AFB).

#### TABLE 5 URBAN WATER DEMAND

In acre-feet per yea	a r
----------------------	-----

Item	1980	1990	2000	2010
Unadjusted applied water demand	76,100	85,250	89,520	90,700
Existing and anticipated conservation*	- 5,000	- 8,150	-10,270	-11,600
Total urban water demand	71,100	77,100	79,250	79,100

vation by each subarea is contained later in this chapter.

<u>Population</u>. The Santa Barbara County-Cities Area Planning Council "Forecast 82" population projections (to the year 2000) for the County were distributed among the five subareas. A rational projection was then made from the "Forecast 82" data for 2000 to arrive at the figures used for 2010. The projections are presented in Table 6.

In 1980, about 57 percent of the population was concentrated in the South Coast Subarea, where the communities of Goleta,

TABLE 6 POPULATION PROJECTIONS

Subarea	1980	1990	2000	2010
Cuyama Santa Maria San Antonio Santa Ynez Lower Upper	1,200 67,400 1,400 57,600 43,900 13,700	1,700 88,000 1,800 71,500 54,000 17,500	2,400 95,000 2,200 75,500 57,000 18,500	3,000 100,000 2,500 79,000 60,000 19,000
South Coast	171,100	178,000	181,000	183,000
Total	298,700	341,000	356,100	367,500

Santa Barbara, Summerland, Montecito, and Carpinteria and the University of California are located. Other major urban areas are Santa Maria, Guadalupe, and Orcutt in the Santa Maria Subarea; Lompoc, Vandenberg Air Force Base, Vandenberg Village, and Mission Hills in the lower Santa Ynez Subarea; and Buellton, Solvang, Los Olivos, and Santa Ynez in the upper Santa Ynez Subarea.

Growth is projected to be greatest in Santa Maria and lower Santa Ynez Subareas.

Countywide, the population is projected to increase by 23 percent, or 69,000, by year 2010.

A January 1, 1984, County population estimate of 320,362 by the California Department of Finance indicates that the population in Santa Barbara County is growing about in step with the prediction of "Forecast 82", which projected population at 325,900 by 1985.

<u>Per Capita Use.</u> Per capita water use differs from one subarea to another because of a number of variables, among which are differences in climate, industrial and commercial development, economic status, and availability of water. Each subarea is unique in its combination of factors contributing to per capita water use. Few of these factors are directly measurable.

Appendix B shows the 1979-1982 calendar year average water use of the major water purveyors in Santa Barbara County. For the South Coast and upper Santa Ynez, only part of the supply is ground water. For the rest of the County, the water production is exclusively ground water. The last two columns display the purveyor area 1980 population and the gallons per capita per day (gped).

Using water use information found in Appendix B, the per capita urban water use by subareas was determined and is presented in Table 7. Private industrial (mainly oil field activities and vegetable processing and cleaning) use in Santa Maria Valley and

#### TABLE 7 1980 URBAN PER CAPITA WATER USE IN SANTA BARBARA COUNTY

Subarea	Gallons per capita per day
Cuyama	283
Santa Maria*	197
San Antonio	201
Santa Ynez	182
Lower**	154
Upper	256
South Coast	175
*Private indus companies, et Santa Maria S	strial pumpage (oil c.) is excluded from Subarea calculations.

Vandenberg AFB use (only part of which is for domestic-type applications) were excluded from the gpcd calculations, but included in the overall calculations of urban water demand.

<u>Urban Water Conservation.</u> Conservation measures in Santa Barbara County are expected to reduce applied urban water demand by approximately 13 percent, or about 11,600 acre-feet annually, by 2010. Net water conservation is considerably less than applied water conservation because the reduction in return flows decreases supplies.

Reductions would be realized from voluntary, more efficient water use practices promoted through public education and from State-mandated requirements to install water-conserving fixtures in newly constructed and renovated buildings.

Updated anticipated savings, from Bulletin 160-83, "California Water Plan - Projected Use and Available Water Supplies to 2010", published December 1983, attributable to conservation measures are presented in Table 8.
#### TABLE 8 URBAN WATER CONSERVATION *

Subarea	1980	1990	2000	2010
Cuyama Santa Maria Sau Antonio Santa Ynez Lower Upper South Coast	20 800 16 500 300 200 3,700	50 2,050 50 1,300 800 500 4,700	100 2,900 70 1,700 1,000 700 5,500	100 3,500 100 1,900 1,100 800 6,000
Total * Net conserv in return f	5,036 ation is less lows.	8,150 than conservation a	10,270 mounts shown due t	11,600 o reductions

#### In acre-feet per year

# Agricultural Applied Water Demand

Agricultural applied water demand, the amount of water applied to irrigate crops in the field, is calculated by multiplying the area devoted to the various crops by the unit applied water use values for those crops. The unit water use by a given crop can vary from one subarea to another depending upon the particular combination of growing conditions. The Santa Barbara County unit values for this report were derived from DWR's Bulletin 160-83.

Agricultural water demand has been projected to the year 2010, as shown in Table 9. Agricultural water demand, which was modified to reflect Santa Barbara County Cooperative Extension estimates and projections, is projected to increase gradually to the year 2000 and then hold almost level to 2010.

Irrigated Land. Based upon a crop survey by the University of California at Santa Barbara, there were approximately 85,000 acres under irrigation in Santa Barbara County in 1975. By 1980, irrigated acreage had increased to 94,000 acres. Much of the increase is in orchards (avocados) in the South Coast Subarea and vineyards in the north county subareas (Santa Ynez, San Antonio, and Santa Maria).

Table 10 shows the projected irrigated agriculture to 2010, assuming that only current water supplies are available. The total irrigated agriculture is projected to increase steadily to year 2000 and then hold almost level to year 2010. Only Cuyama Subarea will experience a steady decline in irrigated acreage, because of its limited water resources.

<u>Unit Water Use</u>. Unit agricultural applied water use, including evapotranspiration of applied water, was obtained from data used in Bulletin 160-83 that was estimated by means of formulas based on climatic and operating conditions in each of the five subareas for each of the following crops: grain and hay, field, alfalfa, pasture, truck, deciduous, citrus and subtropical, and vineyards.

Agricultural Water Conservation. Conservation, as used in this section, means reducing the amount of water applied in

#### TABLE 9 AGRICULTURAL WATER DEMAND *

#### In acre-feet per year

Item	1980	1990	2000	2010			
Unadjusted applied water demand	231,000	238,400	240,200	240,400			
Anticipated con- servation	- 17,900	- 28,300	- 32,650	- 35,200			
Total agricultural water demand	213,100	210,100	207,550	205,200			
* Water demand with current water supply. Effect of conservation on supply, by reducing return flows, not included.							

irrigating crops. It does not mean net water conservation, which is the savings in water after accounting for loss of return flows to ground water. Net conservation in most subareas is much less than the agricultural water conservation. Agricultural water conservation will not add more than 3 percent to the water supply north of the Santa Ynez Mountains where the major deficits exist.

Although much of the excess water applied to crops returns to ground water storage and can be pumped again so that little

	TABLE ]	10	
PROJECTED	IRRIGATED	AGRICULTURE	#

Subarea	1980	1990	2000	2010
Cuyama	8,000	7,000	6,600	5,400
Santa Maria	38,800	40,000	41,000	42,000
San Antonio	8,800	10,600	11,000	11,500
Santa Ynez	25,000	25,500	25,800	26,000
South Coast	13,000	15,000	15,500	16,000
		<u> </u>		
Total	93,600	98,100	99,900	100,900

In acres

#### METHODS FOR AGRICULTURAL CONSERVATION

Conservation methods from DWR Bulletin 198-84, "Water Conservation in California," (July 1984) that offer some potential for reducing <u>applied</u> (but not <u>net use</u> of) agricultural water are as follows:

- o The irrigation method. For each crop, soil, and terrain situation there is an irrigation method more efficient than the others, which should be utilized when compatible with other operating considerations.
- o Irrigation scheduling. Water use can be reduced by scheduling irrigation according to the climate, soil character, type of crop, and management requirements.
- o Good drainage. Poor drainage can detrimentally affect crop production and result in higher water use per crop yield. Besides wasting water, poor drainage can lead to salt buildup in the root zone as well as saturating crop lands. Improving the drainage can result in higher yields as well as saying water.
- o Salt management. Carefully regulating the amount of irrigation water needed to meet both the plant and leaching requirements of the soil is part of conservation.
- o **Rainfall utilization.** Water savings can be realized when irrigation and crop planting are scheduled in coordination with rainfall.

water is actually lost, there are good reasons for conservation of water in agricultural application. The main reason is the high cost of energy to lift and deliver excess irrigation water.

Agricultural water conservation begins with reviewing all phases of irrigation operations and modifying them to reduce water usage where possible through efficient irrigation practices. Irrigation water demands include

- o Weed and phreatophyte control. Water losses can be reduced by removing weeds and phreatophytes in areas of high water tables and open ditches.
- o Evaporation and evapotranspiration suppression. Some water savings can be realized by reducing soil moisture during certain stages of the growing period without damaging production.
- o System automation. The use of automatic irrigation mechanisms prevents excessive water application and also enables cyclic, short periods of irrigation for more efficient water use on soils with low intake rates.
- o Land use. Conservation is related to the efficient use of cropland. Selecting crops on the basis of soil and slope conditions increases the potential for high irrigation efficiency and high crop yields.
- o Institutional. This means taking advantage of the information and services that are available. Federal, State, and local agencies have programs and services to promote more efficient use of water. These include conducting experiments and research to develop better irrigation methods and providing advisory services and legal and institutional means to promote water conservation.

the water consumed through evapotranspiration, the water applied to meet the leaching requirements of soils, and the water applied to operate the system. In each case, the amount of water required depends upon a number of factors, such as soil characteristics, quality of water, drainage, and climate.

Water conservation that can probably be attained through diligent but practical con-

+

servation practices has been estimated to be from 8 to 15 percent between 1980 and 2010. Anticipated water conservation, as shown in **Table** 11, is expected to result from projected increases in the proportion of irrigated crops that have a lower demand for irrigation and expected moderate increases in irrigation efficiencies. Net conservation reflects reductions in return flows due to conservation.

#### Water Supply

All the present water supply for Santa Barbara County originates as precipitation, mainly rain, which falls on the four watersheds of the County. Three of these watersheds are almost entirely within the County. Only the Cuyama River drainage area of the Santa Maria-Cuyama watershed has substantial areas outside the County. Most of the rainfall is used by vegetation in watershed areas, but some percolates through the soil into aquifers to become ground water and some runs off on the surface and becomes streamflow. Return flows of excess applied water are a significant portion of the available ground water.

Local ground water basins and surface reservoirs provide most of the water supply in Santa Barbara County at present. Figure 6 shows existing water sources in the County. A third source, reclaimed waste water, currently provides only a small part of the Countywide supply.

#### **Ground Water Basins**

Ground water from wells is by far the largest source of water for Santa Barbara County. Much of Santa Barbara County is mountainous and composed of nonwaterbearing rock or material of low permeability, but ground water basins exist in alluvial valleys along the main drainage channels in the Cuyama, Santa Maria, San Antonio, and Santa Ynez Subareas. There

TABLE 11 AGRICULTURAL WATER CONSERVATION *

Subarea	1980	19	90	20	00	201	10
Cuyama Santa Maria San Antonio Santa Ynez Lower Upper South Coast**	1 10,4 1,3 5,0 2,500 2,500 I,0	30 00 00 4,400 4,500	1,000 15,000 2,400 8,900 1,000	5,400 5,600	1,200 17,000 2,450 11,000 1,000	5,600 5,800	1,400 19,000 2,400 11,400 1,000
Total	17,8	30	28,300		32,650		35,200

In acre-feet per year

* Net conservation is less than conservation amounts shown due to reductions in return flows.

**Conservation is expected to be constant because of the limited additional opportunities for conservation efforts in the area. Most crops are under drip irrigation at present.

are also ground water basins in the South Coast Subarea, between Santa Ynez Mountains and the ocean (Figure 7). These are the Goleta, Santa Barbara, Montecito, and Carpinteria Ground Water Basins and, although small, they form a significant ground water resource.

Local ground water is pumped extensively for both urban and agricultural use in the five subareas. Usable storage and safe yield estimates for each subarea are given in Table 12.

#### Reservoirs

Surface reservoirs, which provide only about 16 percent of Santa Barbara County's total water supply (Figure 6), are an important source for certain areas (Figure 7). Three reservoirs - Lake Cachuma, Gibraltar, and Jameson Lake - which are on the Santa Ynez River, provide water directly to the South Coast and upper Santa Ynez Subareas.

Water is also released from Lake Cachuma to the Santa Ynez River to provide replenishment of downstream ground water basins. fourth project, Twitchell A Reservoir on the Cuyama River, provides flood control and stores seasonal runoff for later release to replenish the Santa Maria Ground Water Basin, but it is not a surface water supply because it does not provide water through pipelines. The reservoirs are listed with their capacities and yields in Table 13.

Three tunnels through the Santa Ynez Mountains, Tecolote from Cachuma, Mission from Gibraltar, and Doulton from Jameson Lake, convey Santa Ynez River water to service areas in the South Coast Subarea. Their primary purpose is to transfer water to the service areas, but the tunnels also function incidentally as horizontal wells, intercepting ground water. The ground water seeping into the tunnels is included in the yield of the project.





D"PARTMENT OF WATER RESOURCES, SOUTHERN DISTRICT, 1985

### TABLE 12 GROUND WATER STORAGE CAPACITIES

In acre-feet

Subarea	Estimated storage c	working apacity	Safe yield			
Cuyama Santa María San Antonio Santa Ynez Lower Upper	900, 1,200, 500, 1,100, 300,000 800,000	000 000 000 000 33,000 *** 28,000 ***	9,000* 90,000** 8,000 61,000 *			
South Coast****	130,0	000	16,500			
Total	3,830,6	000	184,500			
<ul> <li>* Portion of total basin yield lying within Santa Barbara County.</li> <li>** Portion of total basin yield lying within Santa Barbara County, including Twitchell Reservoir yield.</li> <li>*** Yields shown include riparian pumpages, which are considered to be "safe" over a range of pumpage levels.</li> <li>**** Includes coastal ground water basins from Carpinteria through Goleta Valleys (with a yield of about 12,500 AFY) plus part of the mountain areas behind these basins and the area west of Goleta Valley as far as Tajiguas (yield estimated at 4,000 AFY).</li> </ul>						

# TABLE 13 RESERVOIRS IN SANTA BARBARA COUNTY

24,800 4,000	3,000	27.800
1,000	1,000 500	5,000* 1,500
29,800**	4,500	34,300**
20,200		20,200
•	29,800** 20,200 age yield; annual d 1 yield, which is i	29,800** 4,500 20,200 age yield; annual diversions 1 yield, which is included

In acre-feet per year

	Design capacity		Wa Acre	ste vater, -feet per	<u> </u>	
Treatment Plant	HGD	Acre-feet per year	Production	Reused	Discharged	Place of diacharge**
Cuyama Valley Community,Inc.	0.15	170	40		40	Stream
Santa Haria, City of*	6.5	7,280	4,930	1,040	3,890	Ponds
Laguna County Sanitation District Santa Maria*	2.4	2,680	1,460	1,460		
Guadalape, City of*	0.5	560	560	20	540	Ponds and land
Sinton and Brown Santa Maria	1.0	1,120	635	180	455	Land
Lompoc, City of	5.0	5,600	3,580	30	3,550	Stream
Mission Hills Community Services District	0.4	450	195		195	Land
U.S. Penitentiary, Lompoc*	0.3	340	325	325		Land
Buellton Community Services District	0.3	340	260		260	Land
Solvang Municipal Improvement District*	0.5	560	460	275	185	Irrigation and percolation ponds
Cachuma Sanitation District	0.2	220	20		20	Land
Goleta Sanitary District	10.5	11,760	6,680	120	6,560	Gcean
Santa Barbara, City of*	11.0	12,320	9,520	340	9,180	Ocean
Montecito Sanitary District	1.0	1,120	<b>68</b> 0		880	Ocean
Summerland Sanitary District	0,15	170	140		140	Ocean
Carpinteria Sanitary District	2.0	2,240	1,450	20	1,440	Ocean
COUNTYWIDE TOTAL	41.90	46,930	31,145	3,810	27 , 335	

TABLE 14 SANTA BARBARA COUNTY WASTE WATER PRODUCTION AND RECLAMATION

* Data were provided by Department of Realth Services, in 1983 conditions. **If discharged waste water goes to ponds or streams, it is largely recharged into ground water and reused.

30

# Reclaimed Water

Reclaimed water is generally the treated effluent from domestic waste water treatment plants that is utilized for a designated beneficial use. In each case, it must meet standards of the California Department of Health Services and the discharge requirements of the California Regional Water Quality Control Board (CRWQCB) for the specified use. The quality of the effluent, legal constraints on its use, environmental considerations, cost of providing adequate treatment, and public acceptance are other factors that have a bearing on the extent reclaimed water is utilized. The treatments that would usually be required to meet standards of the Department of Health Services and requirements of CRWQCB range from primary treatment for irrigation of pasture, fodder, and seed crops; through secondary treatment for landscape and golf course irrigation; to advanced secondary treatment for the irrigation of food crops. Each step to upgrade the quality of the effluent becomes increasingly costly.

When reclaimed water replaces potable water for such uses as landscape or golf course irrigation, there is a benefit in that about 70 percent of the amount of potable water replaced becomes available for higher uses. (More reclaimed water must be applied to leach salts from the soil; therefore, there is not a one for one benefit.)

Reclaimed water used directly accounts for a small portion of the water supply in Santa Barbara County. Currently, ten plants treat and reuse 3,810 acre-feet of effluent per year for in-plant uses and pasture or fodder irrigation. These treatment plants are listed in Table 14.

In addition to the direct beneficial use of treated effluent, there is the substantial incidental benefit of recharge to the ground water basin when waste water discharged to oxidation ponds infiltrates to the ground water. Thus, most of the effluent from treatment plants in Cuyama, Santa Maria, San Antonio, and Santa Ynez Subareas returns to replenish the ground water reservoir and is available for reuse.

Only the effluent from the communities in the South Coast Subarea discharges to the ocean and does not replenish the ground water supply. However, some waste water in the South Coast Subarea might be reused in the future.

Currently, there are two proposals under study to utilize waste water treatment plant effluent in the South Coast Subarea. One is in Goleta, which could eventually reclaim up to 8,600 acre-feet annually, and the other is at Santa Barbara Wastewater Treatment Plant, which could reclaim as much as 2,560 acre-feet annually, including for ground water recharge. These studies are described in Chapter V.

# Other Water Supplies

Other water supplies occur occasionally or may be put to use temporarily without detrimental effects upon the long-term water supplies. These water supplies include excess surface runoff and ground water flows that discharge to the ocean and are lost as water supply.

<u>Excess Runoff and Ground Water</u>. In the past, runoff and spills from the reservoirs during extended storms have resulted in large discharges to the ocean. This water constitutes an untapped potential water resource that could be developed for local supplies by some of the projects proposed in this study.

Similar losses from coastal ground water basins occur during wet periods when there is insufficient capacity in basins to store additional water. Sometimes potential recharge is rejected because ground water levels are high.

<u>Ground Water Mining.</u> Pumping more ground water from a basin than is replenished over a long period is known as mining the basin. A water supply may be sustained by taking water from storage as long as it is available. Ground water may be mined from some basins for years with little or no apparent ill effects, but as water levels decline, the practice can result in intrusion of connate brines in all basins and sea water intrusion in coastal basins, reduction in aquifer storage capacity (compaction of clays) with possible land surface subsidence, increased energy costs as the lift increases, failure of production wells, and water quality degradation as deeper and older sediments are dewatered, causing intrusion of connate brines. However, mining a basin can be an important part of water supply planning if the possible detrimental effects have been carefully considered and are resolved in the overall plan.

Currently, the use of water in storage is part of the regular supply in the Cuyama, Santa Maria, San Antonio, and Santa Ynez Subareas. The Cuyama Subarea is an inland basin where continued mining has resulted in increasing costs as the water level declines. The Santa Maria, lower Santa Ynez, and South Coast Subareas have coastal basins, and continued heavy pumping could eventually result in sea water intrusion of the aquifers adjacent to the ocean.

Mining ground water was therefore not considered as a water supply option for the following reasons:

- Ground water is already an important source of supply in the County, and mining more ground water would not qualify under the guidelines on funding local water supply projects.
- Because ground water is now being overdrafted, increasing the practice would have possible detrimental effects on the basins (coastal sea water intrusion).
- Mining ground water may deteriorate the quality of ground water even more, as is evidenced by the degradation that has taken place in areas such as Lompoc and Santa Maria.

#### Water Quality

The quality of the ground water in most subareas generally meets the drinking water standards of Title 22 of the California Administrative Code, which limit the chemical concentrations in drinking water in California. The hardness of the water is excessively high for many beneficial uses and shortens the life expectancy of appliances and water pipes. Total dissolved solids (TDS) and hardness in the water are used here as measures of its quality to compare and evaluate the water quality in the subareas.

Table 15 summarizes ranges in TDS and TH concentrations of more than 85 percent of the water samples taken in recent years of ground water in the respective subareas. Individual well samoles mav deviate significantly from these values. Hardness of the water is high in most of the subareas. The CRWQCB, Central Coast Region, is currently reevaluating the water quality objectives in the Santa Maria Ground water Basin as a result of deterioration of the ground water quality. A review of ground water data indicates there is a selt imbalance in this basin, as may be the case in other basins in the County.

Surface water analyses for typical intermediate flow levels are also summarized in Table 15. The TDS concentrations fall within the allowable limits of the drinking water standards. The hardness, however, is high in every sample.

Water from the SWP is of considerably better quality than the water from local sources. The 1984 average chemical makeup of the SWP water sampled near the diversion to the Coastal Branch (Check 21), in the partially completed Coastal Branch (Check 5), and near the proposed diversion to the Cuyama Branch (Check 29) is summarized in **Table 16**.

Asbestos, which occurs naturally in the mountains of Northern and Central California and in the Coast Range is present to some degree in the rivers of Northern and Central California. Consequently, SWP water, which originates in Northern and Central California, contains varying amounts of asbestos. Because of the association of lung disease with exposure to airborne asbestos, there has been some concern in recent years about the possible health risk of ingesting asbestos with drinking water.

The effects on human health associated with prolonged inhalation of asbestos particles has long been documented by the State Department of Health Services. However, the risks from exposure to asbestos resulting from the ingestion of fibers in the water supply are not presently known. The overall incidence of cancer of the digestive system, the most likely part of the human body that would be affected, has been steadily declining in the United States. Evidence presented in the medical literature neither supports nor refutes the thesis that ingested asbestos fibers are harmful. Animal feeding studies have utilized massive quantities of asbestos, far in excess of that which would be present in domestic water and, even then, no incontrovertible data have been obtained.

Until more is known about the relationship of ingested asbestos and its effect on human health, the State Department of Health Services provides recommendations only and has not set any health standards for asbestos limits in drinking water.

Asbestos exists in water as suspended fibers and is reported in units of million fibers per litre (MFL). Some water supplies in Northern California contain asbestos in concentrations of 15 000 to 20 000 MFL without apparent harm to the population served. Water samples from the aqueduct near the Coastal Branch turnout have usually contained asbestos in concentrations of about 1 000 MFL. Higher concentrations occur during storms in the San Joaquin Valley when flood waters in the vicinity of Coalinga enter the California Aqueduct. Generally, these peak concentrations do not exceed 6 000 MFL; however. peaks of 18 000 MFL have been recorded.

Concentratio	ons in mg/L
Total dissolved solids (TDS)	Total hardness (TH)
900 - 2,600	300 - 1,500
500 - 1,600	300 - 1,400
300 - 1,500	200 - 600
. ,	
400 - 2,000	140 - 1,400
300 - 1.300	150 - 900
400 - 1,300	250 - 900
950	600
720	480
850	520
590	385
	Concentral fill           Total dissolved solids (TDS)           900 - 2,600           500 - 1,600           300 - 1,500           400 - 2,000           300 - 1,300           400 - 1,300           950           720           850

		Τź	ABLE 15	i	
WATER	QUALITY	IN	SANTA	BARBARA	COUNTY

	January-October 1984 average*			
Constituents	Check 21**	Check 5***	Check 29#	
Total dissolved solids##	182	185	184	
Total hardness##	75	75	75	
Chlorides##	37	37	37	
Sulfates##	29	30	29	
Sodium##	31	31	31	
Percent sodîum##	47	46	47	
Specific conductance##	311	307	308	
pH (moles/litre)	7.8	7.8	8.0	
Boron	0.2	0.2	0.2	
Fluoride	0.1	0.1	0.1	
Lead	0.0	0.0	0.0	
Selenium	0.00	0.01	0.01	
Hexavalent chromium	0.00	0.00	0.00	
Arsenic	0.00	0.00	0.00	
Iron	0.03	0.09	0.08	
langanese	0.01	0.01	0.01	
lagnesium	9.0	8.00	8.0	
Copper	0.03	0.02	0.01	
Calcium	16.0	17.0	17.0	
linc	0.03	0.03	0.02	
Phedo J.	0.001###	0.003###	0.004###	
Color (units)	16.0		7.0	

# TABLE 16 STATE WATER PROJECT WATER QUALITY

* Specific conductance in microsiemens per centimetre and all other constituents in milligrams/litre unless otherwise noted.

- ** Located on California Aqueduct near Kettleman City about 12 miles north of Coastal Branch turnout.
- *** Located on Coastal Branch near Devils Den about 12 miles west of Coastal Branch turnout.
  - # Located on California Aqueduct near proposed Cuyama Branch turnout near Maricopa and south of the Kern River Intertie.

## Values correlated from continuous specific conductance.

### Two-month average.

DWR is monitoring and developing a long-term solution for this problem. Asbestos occurs naturally in Cachuma Lake in concentrations of 2 800 MFL. It should be noted that ordinary filtration removes over 95 percent of asbestos fibers. SWP water contains organic material which will form trihalomethanes (THMs) in the presence of chlorine. The production of THMs can be reduced or avoided by filtration and by substituting chloramines (chlorine and ammonia) for chlorine.



CUYAMA	SUBAREA	WATER	SUPPLY	BALANCE
	In acre-	-feet n	on Voar	

	<u> </u>			
	1980	1990	2000	2010
Applied water demand				
Urban Agricultural	400 28700	450 24900	600 21300	700 17200
Total demand (w∕o)*	29100	25350	21900	17900
Conservation		· · · · · · · · · · · · · · · · · · ·		
Urban Agricultural	20 180	50 1000	100 1200	100 1400
Total	200	1050	1300	1500
Total demand (w)*	28900	24300	20600	16400
Water supply				
Total supply (w/o)* Redu in return flows (w)*	9050 50	8950 250	8500 500	0400 800
Total supply (w)*	9000	8700	8000	7600
Water supply balance without supplemental water	-19900	-15600	-12600	-8800
Supplemental water SWP entitlement** Return flows	2 2	. 1600 400	1600 400	1600 400
Total additional water	0	2000	2000	2000
Water supply balance with supplemental water	-19900	-13600	-10600	-6800
* Note: (w/o) denotes withou while (w) denotes wi	t or before th or after	conservation conservation	measurés arc measurés arc	employed, employed,

**** To be met by development of local projects, delivery of SWP water, or both.** Copy of document found at www.NoNewWipTax.com

## CHAPTER IV. COMPARISON OF WATER DEMAND AND SUPPLY PROJECTIONS

Based on the compilations given in the previous chapter, water demand and water supply projections for each of the subareas and for Santa Barbara County as a whole were made.

#### Cuyama Subarea (Figure 8 and Table 17)

Urban water demand in Cuyama Subarea is minimal and is expected to change only slightly in the future due to a proposed residential development at New Cuyama.

Because urban demand is limited, water saved through urban conservation efforts (100 acre-feet annually by 2010) will have minimal effect upon the overall supply.

Agricultural applied water demand is projected to decline between 1980-and 2010, the rate of decline accelerating over time. Demand is projected to drop by 40 percent, or 11,500 acre-feet, over the 30-year period between 1980 and 2010. The decline is expected as a result of the reduction in the irrigated acreage and a change from growing alfalfa, which has a high water use, to irrigated wheat and vegetables, which require much less water.

Conservation could reduce agricultural applied water demand by 4 percent, or 1,000 acre-feet per year, in 1990, and 8 percent, or 1,400 acre-feet per year, by 2010. Net savings would be less because of the reduction in return flows. The total net deficit with conservation could be 15,600 acre-feet in 1990 and 8,800 acre-feet in 2010. The annual deficit decreases mainly because the irrigated acreage would be decreasing also.

The Cuyama Subarea has entitlement to 1,600 acre-feet of SWP water. Local projects to develop this supplemental water supply are investigated in this study. If 1,600 acre-feet is applied, the increase in return flow is estimated to be 400 acre-feet per year.



DRY CHANNEL of Cuyama River crossing Cuyama Subarea.



SANTA MARIA SUBAREA WATER SUPPLY BALANCE

In	acre-feet	per	year	

·	1980	1990	2000	2010	
Applied water demand					
Urban Agricultural	22800 100000	26450 103000	27600 106000	28300 108000	
Total demand (w/o)*	122800	129450	133600	136300	
Conservation					
Urban Agricultural	600 10400	2050 15000	2900 17000	35 <b>00</b> 19000	
Total	11200	17050	19900	22500	
Total demand (w)*	111600	112400	113700	113000	
Water supply					
Total supply (w/o)* Redu in return flows (w)*	98800 8800	107500 16200	107000 16100	109000 18500	
Total supply (w)*	90000	91300	90900	90500	
Water supply balance without supplemental water	-21600	-21100	-22800	-23300	
Supplemental water				· ·	
SWP entitlement** Return flows	0 0	1685Ø 535Ø	1685Ø 535Ø	1695Ø 5350	
Total additional water	0	22200	22200	22200	
Water supply balance with supplemental water	-21600	1100	-600	× -1100	
* Note: (w/o) denotes without or before conservation measures are employed, while (w) denotes with or after conservation measures are employed. ** To be met by development of local projects, delivery of SWP water, or both.					

#### Santa Maria Subarea (Figure 9 and Table 18)

Urban applied water demand in the Santa Maria Subarea is projected to increase by 5,500 acre-feet, or 24 percent, between 1980 and 2010.

Agricultural applied water demand has been projected to increase by 8,000 acre-feet, or 8 percent, between 1980 and 2010.

when the demands are compared with the

reliable water supply, including effects of conservation on demand and supply (return flow), the total annual deficits are projected to increase by 8 percent, or 1,700 acre-feet, between 1980 and 2010.

The Santa Maria Subarea has an entitlement to 16,850 acre-feet from the SWP. The increase in return flow from supplemental water is estimated to be 5,350 acre-feet per year, or 32 percent of the applied SWP water. Local projects to develop this supply are investigated in this study.



AGRICULTURE in Santa Maria Subarea Is an important element in the economy of Santa Barbara County.

SANTA MARIA VALLEY lies in both Santa Barbara and San Luis Obispo Counties. The City of Santa Maria, in the center of the picture, is in Santa Barbara County.



SAN ANTONIO SUBARER WATER SUPPLY BALANCE In acre-feet per year

		per year			
	1980	1990	2000	2010	
Applied water demand					
Urban Agricultural	3616 17500	450 21100	520 22000	600 23000	
Total demand (w/o)*	21116	21550	22520	23600	
Conservation					
Urban Agricultural	16 1300	50 2400	70 2450	100 2400	
Total	1316	2450	2520	2500	
Total demand (w)*	19800	19100	20000	21100	
Water supply					
Total supply (w/o)* Redu in return flows (w)*	8950 950	975Ø 1850	10200 1900	10500 1900	
Total supply (w)*	8888	7900	8300	8788	
Water supply balance without supplemental water	-11800	-11200	-11700	-12400	
Supplemental water					
SWP entitlement** Return flows	0 0	23 Ø	23 Ø	23 Ø	
Total additional water	Ű	23	23	23	
Water supply balance with supplemental water	-11800	-11177	-11677	-12377	
* Note: (w/o) denotes without or before conservation measures are employed, while (w) denotes with or after conservation measures are employed. ** To be met by development of local projects, delivery of SWP water, or both.					
Copy of	document found at w	ww.NoNewWipTax.com	1		

# San Antonio Subarea (Figure 10 and Table 19)

The annual applied urban water demand is projected to decrease substantially between 1980 and 2010. This is because Vandenberg Air Force Base is expected to develop a supplemental supply or to switch its pumping of ground water from the San Antonio Subarea to the lower Santa Ynez Subarea by 1990 or thereabouts (i.e. because of the overdraft situation in the San Antonio Ground Water Basin, it is assumed that Vandenberg develops its supply elsewhere by 1990).

Agricultural applied water demand has been projected to increase from 17,500 acre-feet per year in 1980 to 23,000 by 2010, which is an increase of 31 percent, or 5,500 acre-feet. There have been substantial increases in irrigated land in San Antonio Subarea above those originally projected by other studies. There have been increases in vineyards, irrigated pasture, and vegetables. Long-term conservation practices could decrease projected urban applied water demand 17 percent and agricultural applied water demand by 10 percent by 2010. Net savings from conservation would be less because of reduced return flows.

when demand is compared with the reliable water supply and effects of conservation on demand and supply are considered, the deficit in water supply, projected at 10-year intervals, would drop slightly between 1980 and 1990, then increase gradually to 12,400 acre-feet per year by 2010.

To meet future urban demands, Casmalia, which is within the San Antonio Subarea, has an entitlement to 23 acre-feet of SWP water. There is no return flow in the Casmalia area because of the local geology. Although Vandenberg Air Force Base presently uses considerable ground water from the San Antonio Subarea, its SWP entitlement is assumed to be received in the lower Santa Ynez Subarea.



LOOKING WEST across San Antonio Valley from the community of Los Alamos.



TOTAL SANTA YNEZ SUBAREA WATER SUPPLY BALANCE

·	n acro (cet	, per year		
	1980	1990	2000	2010
Applied water demand				
Urban Agrícultural	12000 65300	19000 66900	21300 67600	21100 69200
Total demand (w/o)*	77300	85900	88900	89300
Conservation				
Urban Agricultural	500 5000	1300 8900	1780 11000	1900 11400
Total	5500	10200	12700	13300
Total demand (w)*	71800	75700	76200	76000
Water supply				i
Total supply (w/o)* Redu in return flows (w)*	60100 3000	70700 7900	71900 10100	72300 10600
Total supply (w)*	64300	62800	61800	51700
Water supply balance without supplemental water	→7500	-12900	-14400	-14300
Supplemental water				
SWP entitlement** Return flows	Ø Ø	12738 2678	14568 3319	14578 3322
Total additional water	0	15415	17887	17900
Water supply balance with supplemental water	-7500	2516	3487	3600
* Note: (w/o) denotes without while (w) denotes w	ut or before 1th or after	conservation conservation	measures are méasures are	employed, employed.
** To be met by development	of local pro	jects, delive	ry of SWP wat	er, <u>or both.</u>

### Santa Ynez Subarca (Figure 11 and Table 20)

The annual applied urban water demand in the total Santa Ynez Subarea is projected to increase by about 9,100 acre-feet, or 76 percent, between 1980 and 2010. Long-term conservation practices could reduce applied urban water demand in 2010 from 21,100 acre-feet per year to 19,200 acre-feet per year. The net savings would be less because of reduced return flows.

Agricultural water demand has been projected to increase slowly between 1980 and 2010.

Through conservation, agricultural water demand could be reduced by approximately 11,400 acre-feet, or 17 percent, to 56,800 acre-feet in 2010. Net water savings would be much less because of reduced return flows to ground water.

when the demand is compared with the reliable water supply of approximately 64,000 to 62,000 acre-feet per year and the effects of conservation on demand and supply are taken into consideration, the total deficits in water demand are projected to be 7,500 to 14,300 acre-feet per year between 1980 and 2010.

To meet future needs, the Santa Ynez Subarea has an entitlement to 14,578 acre-feet per year of SWP water. Return flow from applied SWP water is estimated to be 3,322 acre-feet per year, or 23 percent of the applied SWP water.

Figure 12 and Table 21 and Figure 13 and Table 22 show projected supplies and demands for the lower and upper Santa Ynez Subareas considered separately.



LOWER SANTA YNEZ SUBAREA looking west toward the ocean over the City of Lompoc.



LOWER SANTA YNEZ SUBAREA WATER SUPPLY BALANCE

	n acre icee	pei yeai		
	1980	1990	2000	2010
Applied water demand				
Urban Agricultural	7900 32500	13800 33200	15800 33400	15400 33680
Total demand (w/o)*	40400	47000	49200	49000
Conservation				
Urban Agricultural	300 2500	800 4400	1000 5400	1100 5600
Total	2800	5200	6400	6700
Total demand (w)*	37600	41800	428/80	42300
Water supply				
Total supply (w/o)* Redu in return flows (w)*	34900 1900	36400 4000	37000 5100	37100 5400
Total supply (w)*	33000	32400	319ØØ	31700
Water supply balance without supplemental water	-4600	-9400	-10900	-10600
Supplemental water				
SWP entitlement** Return flows	12 12	10160 1856	11990 2497	12000 2500
Total additional water	Ø	12016	14487	14500
Water supply balance with supplemental water	-4600	2616	3587	3900
* Note: (w/o) denotes without while (w) denotes w	it or before ith or after	conservation conservation	measures are measures are	employed, employed.
** To be met by development	of local pro	jects, delive	ry of SWP wat	er, or both.



UPPER SANTA YNEZ SUBAREA WATER SUPPLY BALANCE In acre-feet per year

		· · · · · · · · · · · · · · · · · · ·				
	1960	1990	2000	2010		
Applied water demand						
Urban Agricultural	4100 32000	5200 33700	5500 34200	5700 34600		
Total demand (w/o)*	36900	38900	39700	40300		
Conservation						
Urban Agricultural	200 2500	500 4500	700 5600	800 5600		
Total	2700	5000	6300	6600		
Total demand (w)*	34200	339ØØ	33400	33700		
Water supply						
Total supply (w/o)* Redu in return flows (w)*	33200 1900	34300 3900	34900 5000	35200 5200		
Total supply (w)*	31300	30400	29900	30000		
Water supply balance without supplemental water	-2900	-3500	-3500	-3700		
Supplemental water						
SWP entitlement** Return flows	0 0	2578 822	2578 822	2578 822		
Total additional water	0	3400	3480	3400		
Water supply balance with supplementa <u>l</u> water	-2900	-100	1 00	-300		
* Note: (w/o) denotes without while (w) denotes w ** To be met by development	<pre>* Note: (w/o) denotes without or before conservation measures are employed, while (w) denotes with or after conservation measures are employed.</pre>					
an is we may assortionitie	UT TOURT NIU	leess' goitad		er i en enerre		



SOUTH COAST SUBAREA WATER SUPPLY BALANCE

In acre-feet per year

	1980	1990	2000	2010	
Applied water demand					
Urban Agricultural	37300 19500	38900 22500	39500 23300	40000 24080	
Total demand (w/o)*	56800	61400	628 <b>00</b>	64000	
Conservation					
Urban Agricultural	3700 1000	4700 1000	5500 1000	6000 1000	
Total	4700	5700	6500	7000	
Total demand (w)*	52100	55700	56300	57000	
Water supply					
Total supply (w/o)* Redu in return flows (w)*	48200 700	48500 700	486 <i>00</i> 700	49600 700	
Total supply (w)*	47500	47800	47900	47900	
Water supply balance without supplemental water	-4600	-7900	-8400	9100	
Supplemental water					
SWP entitlement** Return flows	0 0	12435 865	12435 865	12435 865	
Total additional water	Ø	13300	13300	13300	
Water supply balance with supplemental water	-4500	5400	4900	4200	
* Note: $(w/o)$ denotes without or before conservation measures are employed, while $(w)$ denotes with or after conservation measures are employed.					
THE ID DE MEL DY NEVELOPMENT	ot local pro	jecus, deii <u>ve</u>	гу от эмг шат	er, or both.	

### South Coast Subarea (Figure 14 and Table 23)

The annual urban applied demand is projected to increase by 7 percent, or 2,700 acre-feet, between 1980 and 2010.

Agricultural applied water demand has been projected to increase by 23 percent, or 4,500 acre-feet, between 1980 and 2010.

Conservation practices will decrease urban applied water demand about 15 percent and agricultural applied water demand by about 4 percent by 2010.

When the demand is compared with the

reliable water supply of approximately 48,000 acre-feet per year and the effects of conservation on demand and supply are considered, the anticipated deficit in the combined urban and agricultural demand, projected over the 30 years 1980-2010, would be 4,600 to 9,100 acre-feet per year.

To meet future water demands, the South Coast has an entitlement to 12,435 acre-feet per year of SWP water. Additional return flow from the use of SWP water, estimated at 7 percent in the South Coast, would be about 900 acre-feet per year. A delivery system for SWP entitlement water or local water supply projects is developed in this study for analysis.



SOUTH COAST SUBAREA, looking east from Goleta Valley toward the cities of Santa Barbara, Montecito, Summerland, and Carpinteria.

# TABLE 24 WATER SUPPLY BALANCE WITHOUT SUPPLEMENTAL WATER SUPPLY *

Subarea	198	10	1990	0	2000		2010	
Cuyama Santa Maria San Antonio Santa Ynez Lower Upper	-4,600 -2,900	-19,900 -21,600 -11,800 - 7,500	-9,400 ~3,500	-15,600 -21,100 -11,200 -12,900	-10,900 - 3,500	-12,600 -22,800 -11,700 -14,400	-10,600 - 3,700	- 8,800 -23,300 -12,400 -14,300
South Coast	_	- 4,600	_	- 7,900		- 8,400		- 9,100
Total		~65,400		-68,700		-69,900		-67,900

# In acre-feet per year

# TABLE 25 WATER SUPPLY BALANCE WITH A SUPPLEMENTAL WATER SUPPLY *

## In acre-feet per year

Subarea	1990	2000	2010
Cuyama Santa Maria San Antonio Santa Ynez Lower Upper	-13,600 + 1,100 -11,177 + 2,516 +2,616 - 100	-10,600 - 600 -11,677 + 3,487 +3,587 - 100	- 6,800 - 1,100 -12,377 + 3,600 +3,900 - 300
South Coast	+ 5,400	+ 4,900	+ 4,200
Total	-15,761	-14,490	-12,477
* Assumes water de considering the	eliveries up to SWP enti effects of conservation	itlement levels aft on demand and sup	er ply.

## Countywide Summary of Water Supply Deficits

The water demand, after considering effects of conservation on demand and supply, in Santa Barbara County has exceeded the existing water supply by an estimated 65,400 acre-feet in 1980 and is predicted to exceed it by 67,900 acre-feet by 2010. With the delivery of the full SWP entitlement or an equivalent supplemental water supply to Santa Barbara County of 45,486 acre-feet, plus return flow of 9,937 acre-feet, the deficit can be reduced to approximately 12,500 acre-feet in 2010.

The deficits by subareas based upon the

current local water supply, without and with a supplemental supply, and anticipated demand are summarized in Tables 24 and 25. Figure 15 and Table 26 depict quantities on a countywide basis.

Figure 16 and Table 27 show the combined net water supply balance for all subareas except Cuyama and San Antonio. These displays focus on the subareas where some supplemental supply is most likely to be developed. In these subareas, the net water supply balance shown for the year 2010 is a deficit (-46,700 acre-feet per year) without a supplemental supply, but is a surplus (of 6,700 acre-feet per year) if full SWP entitlements are taken.







JAMESON LAKE and Junca) Dam in upper Santa Ynez watershed.



TOTAL SANTA BARBARA COUNTY WATER SUPPLY BALANCE In acre-feet per year

		·			
	1980	1990	2000	2010	
Applied water demand					
Urban Agricultural	76100 231000	85250 238400	89520 240200	90700 240400	
Total demand (w/o)*	307100	32365Ø	329720	331100	
Conservation					
Urban Agricultural	5000 17900	8150 28300	10270 32650	11600 35200	
Total	22900	36450	42920	46000	
Total demand (w)*	284200	207200	285900	284300	
Water supply			· · · · · · · · · · · · · · · · · · ·		
Total supply (w/o)* Redu in return flows (w)*	233100 14300	245400 26900	246200 29300	248800 32400	
Total supply (w)*	210000	218500	216900	216400	
Water supply balance without supplemental water	-65400	-68700	-69900	-67900	
Supplemental water					
SWP entitlement** Return flows	0 0	43646 9293	45476 9934	45486 9937	
Total additional water	0	52939	55410	55423	
Water supply balance with supplemental water	-65400	-15761	-14490	-12477	
* Note: (w/o) denotes without or before conservation measures are employed, while (w) denotes with or after conservation measures are employed, ** To be met by development of local projects, delivery of SWP water, or both.					



COUNTY WATER SUPPLY BALANCE LESS CUYAMA AND SAN ANTONIO In acre-feet per year

-		·· /·		
	1980	1990	2000	2010
Applied water demand				
Urban Agricultural	72100 164800	84350 192400	88400 196900	89400 200200
Total demand (w/o)*	256900	276750	285300	289600
Conservation				
Urban Agricultural	5000 16400	8050 24900	10100 29000	11400 31400
Total	21400	3295Ø	39100	42000
Total demand (w)*	235500	243800	246200	246800
Water supply				,
Total supply (w/o)* Redu in return flows (w)*	215100 13300	226700 24800	227500 26900	229900 29000
Total supply (w)*	201900	201900	200690	200100
Water supply balance without supplemental water	-33700	-41900	-45600	-46780
Supplemental water			· · · · · · · · · · · · · · · · · · ·	
SWP entitlement** Return flows	0 0	42023 8893	43876 9534	43886 9537
Total additional water	Ø	50916	53410	53423
Water supply balance with supplemental water	-33700	9016	7810	6723
* Note: (w/o) denotes without while (w) denotes w	ut or before ith or after	conservation conservation	measures are measures are	employed, employed.
** To be met by development	of local pro	jects, delive	ry of SWP wat	er, or both.









## ROUTE THAT STATE WATER PROJECT WATER WOULD FOLLOW

Two pumping plants are in operation on the existing portion of the Coastal Branch of the California Aqueduct: Las Perillas (above left) and Badger Hill (above right). If extended its final 83 miles, the Coastal Branch would terminate at the Santa Maria River near the San Luis Obispo-Santa Barbara County line (left). Water would then be distributed within Sente Berbara County by means of an Intra-County Distribution System (ICDS). Possible route of the ICDS through Santa Maria Subarea would be about one mile east of and parallel to the road shown at the bottom left.

## CHAPTER V. IDENTIFICATION OF WATER SUPPLY OPTIONS

Through the years, numerous local water supply projects have been explored in Santa Barbara County. For the current study these projects have been reviewed. In addition, the public was asked to suggest other local projects, and these were also included for consideration. In all cases, the projects considered should be capable, either on their own or in combination with others, of delivering up to 45,486 acre-feet of water per year, which is equivalent to the SBCFCWCD contractual entitlement to SWP water.

In this study, the water supply options that were identified for each subarea consisted of both local projects and the SWP.

### State Water Project

SWP water originates with releases from Oroville Reservoir and unregulated flows in the Sacramento-San Joaquin Delta that go into the California Aqueduct for convevance to the State's 30 water service contractors. including the SBCFCWCD. As originally delivery envisioned, to Santa Barbara diverted County would be from the California Aqueduct via the Coastal Branch, which would pass through San Luis Obispo County and terminate near Santa Maria.

The Coastal Branch, if completed, would extend about 98 miles from the main California Aqueduct at Milepost 184.63, near Kettleman City in the San Joaquin Valley, to a terminus at the Santa Maria River near the San Luis Obispo-Santa Barbara County line (Figure 17). Phase I, known as the Coastal Stub, was placed in operation in January 1968, in Kings and Kern Counties. It consists of some 15 miles of canal, Las Perillas and Badger Hill Pumping Plants, and discharge lines, with the terminus at Berrenda Mesa Water District's pumping plant (near the site of the proposed Devil's Den Pumping Plant). Water deliveries are made to Devil's Den Water District and to Berrenda Mesa Water District from the Coastal Stub.

Phase II, the remaining 83 miles of the Coastal Branch yet to be completed, would deliver water to SLOCFCWCD and SBCFCWCD. This phase would probably include three additional pumping plants and a power-recovery plant, with the 83 miles of pipeline.

Water would be delivered within Santa Barbara County through an Intra-County Distribution System (ICDS), which would be constructed by the local agencies. (See Figure 18.) Delivery of SWP water to the Santa Maria terminus would be common to all subareas; however, the ICDS alignment and configuration would depend on the level of participation by each subarea, which would be determined by the local water options selected.

For this study, apportionment of SWP entitlements was made among the five subareas and local water agencies to approximate Resolution No. 1266 of the SBCFCWCD Board of Directors, dated December 6, 1982, as shown in Table 2 in Chapter II.

Because DWR is faced with the eventuality that total contractual demands on the SWP will exceed its existing dependable yield, DWR is making the following efforts to obtain additional yield:

- o Evaluating alternative management plans to make maximum use of existing resources so that the long-range water supply obligations of the SWP can be met.
- o Studying a large-scale water supply project in an effort to provide substantial amounts of additional SWP yield, and



o Investigating local water supply projects as new sources of water for the State Water Resources Development System (which includes the SWP) as alternatives or additions to those sources previously considered.

DWR is continually studying the hydrology of the Sacramento and San Joaquin River basins and the future probable operation of the SWP. One of the outputs is the projected capability and reliability of water deliveries to SWP contractors under varying assumptions of available supply and service area demands.

The studies are conducted at various levels of assumed development. Project operation is simulated over a 57-year period using data from 1922 through 1978. Each operation study assumes certain facilities in place and functional. The validity of the facility development assumptions is subject to many factors external to the operation study.

Based on currently available study results which assume development of specified facilities, the probability of the SWP imposing a reduction in its requests for entitlement water in the year 2000 is approximately 70 percent. Annual entitlement requests for the project as a whole would typically be reduced up to 20 percent in 2000. If conditions were similar to the extended dry period experienced in the Sacramento-San Joaquin Valley during the 1928-34 drought, necessary reduction percent. Smaller be about 30would deficiencies would occur in less severe droughts. However, the actual reduction, if any, for municipal users such as in Santa



DEPARTMENT OF WATER RESOURCES, SOUTHERN DISTRICT, 1945

Copy of document found at www.NoNewWipTax.com

Barbara County would be much less and less frequent, since agricultural users are required to take deficiencies of up to 50 percent in a single year and 100 percent in any consecutive 7-year dry period before any reduction is made for other users.

These results assume the following facilities are in place: the existing SWP facilities, North Bay Aqueduct, enlarged Delta pumping plant, enlarged East Branch (600 efs), Sherman Island overland facilities, Delta transfer facilities, Los Banos Grandes with 500,000 acre-feet of storage capacity, and extended Coastal Branch to serve San Luis Obispo and Santa Barbara Counties.

Generally, except for desalination, the results indicate SWP water deliveries are comparable in reliability to the alternatives presented in this study.

## incorporation of Local Projects

Local water supply projects, which include reservoirs, water reclamation projects, and ground water storage programs, are now being considered as sources of additional water for the SWP because of environmental, energy, and cost considerations. Local projects may be able to decrease SWP energy requirements by minimizing the need for transporting water over long distances from the Sacramento-San Joaquin Delta to SWP service areas.

Water supply contractors within SWP service areas, such as SBCFCWCD, are being encouraged to study and develop proposals for local projects, with the understanding that DWR will investigate only those projects that appear to be feasible on an engineering and financial basis and are economically and environmentally sound. To facilitate evaluation and inclusion of local projects into the SWP, DWR prepared "Revised Guidelines on Funding Local Water Supply Projects for Inclusion in the State Water Project", dated December 29, 1982.

The use of such local projects is in keeping

with the expressed wishes of the local residents in Santa Barbara County, who have encouraged their local water agencies to develop a number of possible projects for consideration by DWR.

In this study, each local water supply project was analyzed on the same basis, taking into consideration the following:

- <u>Incremental Project Yield Reliability</u>. To what extent can the project be relied on as a water source during a drought period (critical dry period)?
- o <u>Estimated Cost</u>. What is the project's capital cost (April 1984 dollars) and what is its annual unit cost in dollars per acre-foot of water delivered?
- o <u>Financing by SWP</u>. Does the project meet the eligibility criteria for financing by the SWP?
- o <u>Engineering Considerations.</u> Is the project engineeringly feasible? Can it be built to meet existing standards by acceptable techniques?
- o <u>Net Energy Required.</u> Will the project rely heavily on energy consumption (energyintensive project) or will it generate power?
- Quality Water and Environmental 0 Considerations. What are the water quality and environmental impacts of the project? Will its water quality have a positive or adverse impact on the existing water supply? Will it have a minor or a major impact on the environment? What are some of the benefits? Figure 19 shows the quality in terms of total dissolved solids (TDS) content of water from the options discussed in this report.
- o <u>Legal and Institutional Considerations</u>. What legal or institutional constraints, if any, are present and can they be overcome? What agencies are involved and what agreements must be reached?

This approach provided an opportunity to consider all possible water supply projects,



to bring to the surface their merits and shortfalls, and finally to screen the best possible options for further consideration within each subarea.

0

Watershed management was considered within each of the subareas. Management of watershed vegetation to increase runoff is a method of increasing the yield of reservoirs and ground water recharge facilities. Such increase in runoff results from the temporary clearing of brushlands, understory in woodlands, permanent brush to grass conversion where appropriate, and timber harvest. On a general basis. ดกกันอโ evapotranspiration ean reduced in be proportion to precipitation on the treated areas by amounts that range from none at 16 inches of precipitation to 5 inches at 30 inches of precipitation. When shrubs and trees are allowed to regenerate after clearing, the additional runoff declines to nothing in about 7 years. Therefore, a good management program would include provision

to clear enough land each year to maintain a given mean annual water salvage. To achieve this objective would involve effects of wildfires; monitoring the conducting chaparral management (for fire hazard reduction), including range improvement, timber harvest, and reforestation activities of others; and, when necessary to achieve the water salvage objective, offering incentives to secure more clearing than would occur in the normal course of events. A typical plan would call for clearing brushlands on a 25-year cycle, or an average of about 4 percent of the brushlands in the watershed each year. It should be noted that such management will substantially improve habitat and may satisfy the wildlife requirement to provide substitute habitat for that lost to inundation by new reservoirs.

The amount by which the water supply from reservoirs or ground water basins is

augmented will be substantially less than the increase in runoff due to vegetation management. Most of such increase occurs during the rainy season. Therefore, the additional runoff must be regulated to the time of need (dry season), which limits the usable portion to the otherwise unused space in reservoirs or capacity for diversion and spreading of such water by ground water recharge facilities.

This alternative was not chosen for further study because it did not meet the test of providing a significant dependable supply increment during later years of a critical dry period. In addition, it is an operational practice that can be instituted at any time by local agencies, without construction of facilities. The first cost will be development of a management plan and negotiation of a "coordinated resource management agreement" with other land or resource management agencies.

### Water Supply Options for Each Subarea

The various local and imported water supply projects that appear to be viable options have been analyzed for each subarea. These options are described in the following sections and grouped by subarea.

## CUYAMA SUBAREA

Table 28 contains a summary of the options considered for Cuyama Subarea. Their locations are shown in Figure 20. Of the numerous options investigated, the following appear most promising (not necessarily in order of preference) and were used for incorporation into alternatives and further analysis.

Santa Barbara Canyon Reservoir. This reservoir has two potential damsites in Santa Barbara Canyon. Conditions appear favorable for developing a supplemental water supply reservoir at either location. Site I (lower) is in Section 27, T9N/R25W, and site II (upper) is about 2.5 miles upstream in Section 7, T8N/R25W.

Site I has a watershed of 47 square miles. A dam at this site would have a crest length

of about 2,100 feet and would require 5 million cubic yards of material for construction. The resulting lake would have a surface area of 550 acres and a storage capacity of 32,000 acre-feet.

Site II has a watershed of 37.3 square miles. A dam at this site would have a crest length of 1,100 feet and would require 4 million cubic yards of material for construction. The resulting lake would have a surface area of 355 acres and a storage capacity of 32,000 acre-feet.

Site II appears to be more favorable for a dam and reservoir for the following reasons: (1) Although the reservoir would have a smaller surface area, it would have a maximum water surface elevation of 3.350 feet (mean sea level) and water depth of 240 feet; therefore, it would impound the same amount of water as site I; (2) it would percent less surface area: have 35 consequently, less water would be lost to evaporation; (3) although the dam would be smaller and less costly, the annual yield would be approximately the same, about 1,500 acre-feet.

About \$3 million would be needed for the outlet, \$11 million for the spillway, and \$22 million for the dam and reservoir, giving a total of about \$36 million to construct the dam and reservoir at site II.

A pipeline from the reservoir to a filtration plant would be needed. It would add approximately \$250 per acre-foot to the cost of water supply. The plant to filter approximately 2 to 2.5 cubic feet per second would be required for a potable water supply.

State Water Project. A SWP system that would serve Cuyama Subarea would require the construction of a separate water system (Maricopa to New Cuyama) unrelated to the Coastal Branch. This Cuyama Branch would extend about 27 miles from the main California Aqueduct near Check 29, northeast of Maricopa in the San Joaquin Valley, to a terminus near New Cuyama. A pipeline, mainly 12-inch, would parallel State Highway 166 with pumping stations to
1						······		
Water supply option	Incre- mental project yield (AFY)	Estimat projec lst cost, (Mil.\$)	ed 1984 t costs Unit cost, (\$/AF)	Engineering considerations	Net energy required (kWb/AF)	Water quality and euvironmental considerations	Legal and institutional considerations	Remarts
1. SANTA BARBARA CANYON- RESERVOIR Site I Site I	1100- 1500	39.0 36.0	2517	A significant fault of unknown age and activity crosses close to the axis of the dam. Geological investigation would be necessary to ensure that construction of a dam at this site is practicable.	Minimal May provide hydro- electric power	The reservoir would store poor quality water and would be sus- ceptible to siltation. Rare 5 endangered spe- cies immigrate or re- side in Santa Barbara Canyon area. Impact must be assessed before	Construction of the re- servoir project could decrease the inflow to Twitchell Res; this could be considered as infringement on prior vested rights. If SWP water is delivered to Santa Maria, a water	A previous study consi- dered it highly un- likely that construc- tion of the dam would retain a significant amount of water in Cuyama Valley.
2. Branch Canyou Reservoir Site I Site II	400 300	12.0 8.0	3210	Geologic investigation would be necessary to ensure that construction of a dam a: this site is practicable.	Minimal May provide hydro- electric power	studies.	rights exchange con[d negate water rights issues. Same as Santa Barbara Canyon Dan and Reservoir Project.	
3. Ground water recharge	Minimal			Previous study shows that only a small portion of the floodflows leaving the valley could be capt- ured by any reasonable program of augmentation.	Hone	Water quality in the area is comparatively poor. Locally unsuit- able for domestic uses. TDS ranges from 900 to 2600 eg/L along river S Valley floor. Sulfate concentrations frequen- tly exceed 500 mg/L, hardness ranges from 300 to 1500 mg/L. Witrates and chlorides generally are not con-	Conjunctive use of sur- Eace and ground water basin could infringe on prior vested water rights. If SWP water is delivered to Santa Marie, a water rights exchange could negate water rights issues.	Cuyama Valley has been identified by DWR as an area subject to critical conditions of overdraft.
4. Ďesalination of oil field brines	450			Treatment facilities, pumping stations, and pipelines can be con- structed at the proposed site, and the engineer- ing features of the pro- ject can be constructed, Copy of docum	4900 ment found at	sidered a problem. Desalted water would be for urban use or ground water recharge; water quality good. (TDS = 500 mg/L.) www.NoNewWipTax.com	Agreements would be re- quired among the various local agencies, DWR, and the oil coupany.	Supply would decline with time and is inter- ruptable, depending upon oil field opera- tions.

TABLE 28 SUMMARY OF CUYAMA SUBAREA WATER SUPPLY OFTIONS

-

· . · ·

#### TABLE 28 (Continued) SUMMARY OF CUYAMA SUBAREA WATER SUPPLY OPTIONS

.

······································	Incre-	Estimat	ed 1984				71	
	project	j projec Ist	Unit		energy	and	and	
Water supply option	yield (AFV)	cost, (Mil.S)	COST, (S/AF)	Engineering considerations	required (kWh/AP)	environmental considerations	institutional considerations	Bassete
	(121)		141 10-7		(			
4. Desalination of oil field	1			Special Creatment may be required due to poten-		aental impact would		
brines	-			tial toxicity bazards.		occor during the con-		
(Continued)						ing plant and the trans- portation facilities.		
			•	1		The use of local desalt-		
		į				ed water would help con- eserve the fresh water supplies of the area.		
i Matanahad			-	Manual areas much ba	Telesco	Whather the rediment	L Constituted B and	
s. waterenteu management			-	upitream from reservoir	OUE DOWD	yield effects are bene-	A Coordinated Resource Management Agreement	Vegetation management can be initiated and
		ļ		facilities in order to		vill depend on the care	secore the cooperation	octerits realized with- in 2 or 3 years after
		1	ļ	regulate the additional tunoff.		exercised in the management program.	of other state and federal resource and	need for additional streamflow is
							land management agencies.	ascertained.
6. Weather	1000	•	÷	Cloud seeding appears to	Minimal	The effects of in-		This project is on-
	2000**		ļ	conducted from aircraft.	ļ	fall on fish and wild-		going; new SWP yield would result only from
	•				-	life are impossible to determine.	-	additional cloud seeding.
7. Water rights	N/A	N/A					(See Santa Barbara Cyú.,	
exchange					_	-	Srauch Cyn, and ground Water recharge remarks.)	
8. STATE WATER	1 1 60-0	8/A	1119	Importation of SWP water	4030	The quality of SWP	Importation of water	It is technically feas-
PROJECT			-	to Cuyawa Valley would require construction of a		Average 1984 consti-	from distant sources for sgriculturel use	ible to deliver SWP water from the Calif.
			-	separate system (Maricopa		tuents (in mg/L at (back 28-mean Maricona)	appears to be beyond	Aqueduct; a turnout
		1		to Coastal Branch, System		are shown in Table 16.	crops currently raised	Teft/Maricops.
-	Ę	ł	Ę	requirement: over 27 mi. 1 of 8- to 12-iach pipe-	Į		or suitable to the area.	
			-	line 2 pumping stations,	· ·			
	-			sites (2 tanks, 50,000		-		
		i		gellons/site). Total lift of 2,500 feet.	· ·			
	· <u> </u>				<b>L</b>	<u> </u>	F	
* Not determine ** Tield cannot	eo. be estid	uted with	in reason	able accuracy.				

Note: Options in CAPITAL LETTERS are included in selection of alternatives.

.



DEPARTMENT OF WATER RESOURCES, SOUTHERN DISTRICT, 1985

Copy of document found at www.NoNewWipTax.com

lift water about 2,500 feet into the Cuyama Subarea. Regulation would require one 50,000-gallon tank at two different sites.

Although water delivered would be of good quality (average TDS content was 184 mg/L in 1984), it would require filtration prior to use for domestic purposes. Use for agricultural purposes appears to be beyond the payment capacity of crops currently raised or suitable to be grown in the area.

<u>Options Not Selected.</u> Other options which were analyzed but not selected are listed below. Descriptions of these options and reasons for not selecting them are summarized in **Table 28**.

- Branch Canyon Reservoir

- Ground water recharge

- Desalination of oil field brines

- Watershed management

- Weather modification(already implemented)

- Water rights exchange

#### SANTA MARIA SUBAREA

This subarea's water supply options are listed and summarized in **Table 29** and located on **Figure 21**.

Of the nine options investigated, the following three appear most promising (not necessarily in order of preference), and they were incorporated in the alternatives.

<u>Round Corral Reservoir.</u> This option is a proposal to construct a dam (Round Corral Dam) on the Sisquoc River to develop a reservoir that would provide 5,500 to 6,700 acre-feet of water per year for ground water basin recharge.

The Round Corral Dam is proposed for a site a few hundred feet downstream of Round Corral Canyon, nine miles east and upstream of Sisquoc. The watershed upstream from the proposed damsite comprises 290 square miles of mountainous terrain, most of it wild and undeveloped. The land that would be inundated by the reservoir is generally unsuited for farming and there appears to be no major improvement or utility to relocate.

Two sizes of reservoir are being considered. The USBR estimates that a 50,000-acre-foot reservoir would have an annual yield of 5,500 acre-feet, and an 82,000-acre-foot reservoir, an annual yield of 6.700 acre-feet. Runoff captured during the wet season would be released later in the year in a ground water replenishment operation that would help mitigate overdraft conditions downstream in the Santa Maria Valley. However, because Twitchell Reservoir already discharges into the Santa Maria River to recharge the basin, the river may not be capable of handling the additional flow from Round Corral Reservoir. New recharge facilities may be needed; but are not included in the costs of the Round Corral project.

Desalination of Sea Water. In the past, desalination of sea water has been developed only in special cases because of high energy cost. its However. the technology to desalt water has improved and, as the cost of other water supplies increases, desalination of sea water is becoming more competitive as an alternative water supply.

DWR has been evaluating the role that desalination of sea water and brackish waters can play in providing a part of California's water supply. There are no significant technical problems in obtaining fresh water from sea water by desalination. Large quantities of fresh water for municipal use are provided by this means in several parts of the world where natural supplies of fresh water are in short supply and desalination of sea water is the lowest cost alternative means to provide a water supply. The trend in improvements in sea water desalting technology tends to reduce the cost of sea water desalting. However, the effects of inflation and increased costs of energy have had a net effect of increasing the costs, and energy cost does impact desalination costs more than the

TABLE 29										
SUPPLARY	02	SANTA	MARIA	SUBAREA	WATER	SUPPLY	OPTIONS			

Wat	er supply option	Incre- mental project yield (AFY)	Betimate <u>project</u> lat cost, (Mil.\$)	d 1984 comts Unit comt, (\$/AF)	Engineering considerations	Ret energy required (kWb/AF)	Water quality and environmental considerations	Legal and institutional considerations	Resarks
1. R	OUND COBRAL RESERVOIR	6700	83.3	902	Cassuress fault runs south east to northwest through the project area, but it is considered to be in- active. A small fault could be present in the south abutment.	Hinimal May provide hydro- electric power	Construction of the project may promote in- creased human use and development of the area which could threaten the habitat of both the California conder and American peregrine -falcon.	The reservoir area is under the ownership of Sisquor Ranch.	The proposed reservoir would be operated con- junctively with the existing Twitchell Re- servoir to increase the recharge of the Santa Maria Valley Ground Water Basin.
					No major improvements would need to be ac- quired or relocated due to project construction. If the water produced is used to recharge the Santa Haria Basin, additional recharge facilities will, in all likelihood, need to be developed as part of the project, because the existing Santa Haria River channel may be capable of handling only water presently dis- charged from Twitchell.		Construction of the dam would have significant long-term adverse impacts on the wildlife resources of the Sisquoc River.		
2, T	Witchell Reservoir Eolargement	Ninim <u>e l</u>	Oakaowa		-	Minime]	Water eventually re- charges Santa Maria Basin. Its quality de- pendent on volume and quality of upatreau flows. Generally poor, TDS 550 and 1600 mg/L for high and low flows. Basin of poor quality.		Natural runoff of watershed is not suffi- cent for project.
3. 1	Witchell Reservoir, Modified Operations (Improved Water Con- mervation)	*	0.015		The existing facilities would not be modified in any way.	Minisel			This project is on- going; arrangements are being made to implement this concept on a long- term basis.
4. 5	Santa Maria River Off- Changel Recharge	-			It would be necessary to build & diversion faci- lity.	None	500 acres of prime sgricultural land would be displaced.		Loss of large agricul- tural acreage not acceptable.

Copy of document found at www.NoNewWipTax.com

		Incre-	Batimate	ed 1984					1
	Water supply option	mental project yield (AFY)	project let comt, (Kil.\$)	Costs Unit Cost, (\$/AF)	öngineering 	Net energy required (KWh/AF)	Water quality and environmental considerations	Legal and institutionsl considerations	Bénarta
<b>5</b> .	DESALINATION OF SEA WATER	10150 to 16850	46.0 to 74.4	1185 to 1143	Treatment facilities, pamping stations, and pipelines can be con- structed at the proposed site and the engineering features of the project can be constructed to desirable standards by Accepted techniques.	7550	Desalted water of good quality would be for urban use. Minimus adverse envi- renmental impact would occur during construc- tion of the desalting plant & the transports- tion facilities. The use of local desalt- ed water would held con- serve the fresh water supplies of the 4rea.	Agreements would be re- quired between the var- ious local agencies and DWR. Gonstruction of the de- salting plant near the coast must be approved by the Coastal Commis- sion and the California Regional Weter Quality Control Soard, Central Coast Region.	Desslination plant size depends on whether or not Round Corral Reser- voir is constructed. Very energy intensive.
6.	Devalination of oil field brinea	2350	11.0		Depaination would be by means of reverse samesis of the equivalent. An entire new treatment plant would have to be constructed.	4900	Reliable water supply, The product water would be used for municipal 4 industrial purposes, Special treatment may be required due to po- tential toxicity basards as related to petroleum- related chemicals and besuy metals.	Agreements would be re- quired among the var- ious local agencies, DWR, and the oil company.	It is not known if the supply of source water would be svailable to meet demands beyond the year 2000. Very energy intensive.
-	Watersbed Management	** · · · ·	**	<b>**</b>	Management areas wust be upstream from reservoir of ground water recharge facilities in order to regulate the additional twooff.	Unknown	Whether the sediment yield effects are bene- ficial or detrimental will depend on the care exercised in prescribed burning.	A Coordinated Resource Kanagement Agreement will be required to secure the cooperation of other state 5 fed- eral resource & land Reservent descension	Vegetation wanagement can be initiated and benefits realised with- in 2 or 3 years after need for additional streamflow is
8,	Weather Modification	3000 to 600 <b>0**</b> *	<del>2</del> .	**	Cloud seeding appears to be most effective when conducted from mircraft,	Kinimel	The effects of in- creased seasonal rain- fall on fish and wild- life are impossible to determine.	— oʻqgeneot ʻqgençiga.	ascertained, This project is on- going; new SWP yield would result only from additional cloud meeding.
9.	STATE WATER PROJECT	16850	N/A	430 to 535	Must build Constal Branch plus part of the IGDS (river crossing plus one pumping plant and pipe- line) which is engineer- ingly feasible.	1985	The quality of SWP water would be good. Average 1984 constitu- euts (in ug/L at Check 5-Constal Branch) are shown in Lable 16.	Contract between State and ShCFCWCD is in place for ease of im- plementation. Contracts between ShCFCWCD and Agencies that are to receive SWP water may be weeded. No major legal or institutional problem is anticipated.	Unit cost will be de- pendent on the smoont of water delivered to other press within the County.
Ľ	<ul> <li>Fresently being</li> <li>Not determined</li> </ul>	ig doae; t i. 	herefore,	there in	no Cev water yield involve	:d .	Hate: Options in CAPITAL	estimated within reasonable LETTERS are included in sel-	Accuracy. ection of elternatives.

TABLE 29 (Continued) SUMMARY OF SANTA MARIA SUBARBA WATER SUPPLY OFTIONS



DEPARTMENT OF WATER RESOURCES, SOUTHERN DISTRICT, 1985

Copy of document found at www.NoNewWipTax.com

other alternatives. It is not possible to accurately predict how these factors will influence the future cost of desalting. The costs shown in this report reflect DWR's best estimate of future costs.

Because the projected water demand in Santa Maria Subarea indicates a need for more water than is available locally, desalination of sea water is a potential source for part of its future water. Costs developed for the desalination of sea water in Santa Maria Subarea using reverse osmosis are given in Table 30.

State Water Project. Delivery of SWP water would require the completion of the Coastal Branch, as described earlier. The Santa Maria Subarea is conveniently located near the terminus of the Coastal Branch and would require only construction of a pipeline from the Santa Maria Terminus of the Coastal Branch to a point on high ground east and midway between the City of Santa Maria and Orcutt. Final configuration and cost would depend on the level of participation within Santal Maria Subarea and the other subareas in the County. Construction of the Coastal Branch would be a State responsibility, but construction of the pipeline, as part of the ICDS, and a filtration plant would be a local responsibility.

If SWP water is delivered to Santa Maria Subarea and integrated into the water system of the City of Santa Maria or Orcutt, it will require the construction of a filtration plant for the SWP water. Nevertheless, SWP water would be of very good quality when compared to existing ground water. Direct use for agriculture appears to be beyond the payment capacity of crops currently raised and is not projected in this study.

Importation of SWP water to the Santa Maria Subarea would improve the local water quality. It is also to Santa Maria's advantage to use the best quality water available throughout its system to meet the stringent waste water discharge requirements that have been established.

Options Not Selected. Other options that

## TABLE 30 DESALINATION OF SEA WATER BY REVERSE OSMOSIS IN SANTA MARIA SUBAREA

Plant capacity, AFY	16,850
Capital cost	\$ 74,400,000
Annual capital cost Annual operating cost Annual local	\$  4,735,000 \$ 10,970,000
transportation cost	\$ 3,555,000
Total annual cost	\$ 19,260,000
Unit water cost/AF	\$ 1,143

Assumptions and Method of Computation 1. Plant life expectancy, 30 years.

- 2. Interest rate, 9.5 percent.
- Unit energy consumption, 7550 kWh/AF.
- Unit energy cost, \$0.085/kWh(local) and \$0.03/kWh (State).
- 5. Energy recovery equipment cost included in capital cost.
- Operating time, 85 percent; maintenance time, 15 percent; fresh water recovery, 30 percent.
- 7. Sea water TDS content, 35 000 mg/L.
- 8. Plants made up of 5 MGD or smaller modules.
- 9. April 1984 cost base.

were analyzed but not selected are listed below. Descriptions of these options and the reasons for not selecting them are summarized in Table 29.

- Twitchell Reservoir enlargement
- Twitchell Reservoir modified operations (already implemented)
- Santa Maria River off-channel recharge
- Desalination of oil field brines
- Watershed management
- Weather modification (already implemented)

## SAN ANTONIO SUBAREA

Land use in the San Antonio Subarea is devoted almost entirely to agriculture; urban water demand is minimal. Local ground water is the only supply in the subarea. Ground water is also exported to Vandenberg Air Force Base and provides 70 percent of its water supply. Total water demand exceeds replenishment, but local water supply options are limited and there are no supplemental water supply projects planned for the subarea.

This subarea has an allocation of 23 acre-feet of SWP water, but a delivery system for this small subarea alone would be prohibitively costly. In any event, SWP water would be the only supplemental supply for Casmalia, where some urban water demand is concentrated, and then only if the ICDS pipeline to the lower Santa Ynez Subarea were routed close to the town, thereby minimizing its costs. Casmalia is in a small adjacent watershed but is grouped with the San Antonio Subarea.

The potential water supply options are described in Table 31 and located as shown on Figure 22. Only SWP appears to be viable and is included in the alternatives.

State Water Project. SWP water delivery to the San Antonio Subarea would require continuation of the ICDS pipeline to Vandenberg Air Force Base and/or lower Santa Ynez Subarea, as described under Santa Maria Subarea.

The pipeline would parallel Betteravia Road to Mahoney Road, turn southwest along Black Road, then extend to Casmalia. A pumping station would be required just beyond Cabrillo Highway to cross the Casmalia Hills north of Casmalia where a terminal storage tank would be located.

Options Not Selected. Other options that were analyzed but not selected are listed below. Descriptions of these options and the reasons for not selecting them are summarized in Table 31.

- San Antonio Creek Reservoir

- Watershed management

- Weather modification(already implemented)

# SANTA YNEZ SUBAREA

The subarea is topographically separated into an upper and lower valley by a difference in elevation and by a narrowing of the watershed and river channel about three miles west of Buellton.

The <u>upper</u> portion of <u>Santa Ynez Subarea</u>, known as Santa Ynez Valley, is at elevations ranging from 400 to 900 feet above sea level. The communities of Santa Ynez, Los Olivos, Ballard, Solvang, and Buellton, together with small farms and large ranches, are found in this portion.

The projected water demand in the upper Santa Ynez Subarea exceeds the amount of water available from the existing sources of supply, and a new source of water will be needed to meet future water demands. Various options were analyzed and the following most promising ones were selected for further study:

- Cachuma Reservoir plus conjunctive use operations.
- Enlargement of Cachuma Reservoir (raising the dam by 27, 33, and 42 feet) with and without conjunctive use operations.
- New Gibraltar Reservoir with and without conjunctive use operations.

- State Water Project.

The local projects above would be shared with the South Coast Subarea and, in some cases, with the lower Santa Ynez Subarea.

The water supply that is potentially available from the Santa Ynez River through the proposed water supply projects would not be sufficient to meet the SWP entitlements of both Santa Ynez and the South Coast Subareas.

The results of the investigation for each

			T.	1313 31			
SUDMARY	0₽	SAU	101100110	SUBAREA	MATER.	SUPPLY	OPTIONS

		incre-	Estimate	d 1984					
			ртојесс	COSCS			Water quality	Legal	
P	ater monly	project.	100	CHALC	Tandananian	energy	and .	bas	
-	eptine	(ATT)	freit AD	(8/47)	CONTRACTION .	Tequires	dSY1fonmental	institutions]	
			(AIL. 4)	(4142)	CONFIGURATIONS		CONSIGEREIONS	considerations	Lunariu
	San Antonio Creek Reservoir	1500	30.0		3 possible dem sites were identified in a previous atudy, however, feasibi- lity was not established for any of the sites. The reservoir would be situated on deep, highly permeable alluwium.	Minime1	San Antonio Creek and Barks Slough are en- vironmentally sensitive areas bacsume of the presence of an enden- gered species.		Vary poor dam mite.
. 2.	Yatorehed Management	*	*	•	Management areas must be upstream from reservoir or ground water recharge facilities in order to regulate the additional runoff.	Pakucen. –	Whether the sediment yield effects are bene- ficial or detrimental will depend on the care exercised in the untagement program.	A Coordinated Essource Management Agreement will be required to secure the cooperation of other state and federal resource and land management agancies.	Vagetation management can be initiated and benefits realized with- in 2 or 3 years after bend for additional streamflow is accertained.
3.	Vesther Kodification	2090 to 4090**	*		Determination of sug- montad water supply in surface reservoirs would require detailed opera- tional studies. Cloud seeding appears to be most effective when conducted from sirersft. Cloud seeding is most productive during wet years and least produc- tive in dry years.	Minime1	The effects of in- creased seasonal rain- full on fish and wild- life are impossible to determine.	Cloud seeding in one area could modify pra- cipitation in another area.	This project is ou- going; new SWP yield would result only from additional cloud seading.
4.	STATE MATER PROJECT	23***	¥/A	598 to 774	Routing vis Coests! Branch and LCDS (Lompoc- VAFB Lateral: low energy and pressure routs). Engineeringly feasible. Coestal Branch would re- quire 3 pumping plants, five regulatory storage sites, ade power recovery plant, and pipeline. The LCDS facility required would include one pumping plant plus pipeline.	2220	The quality of SVP water would be good. Average 1984 constitu- ents (in mg/L at Check 5 - Coastal Breach) are shown in Table 15.	Contract between State and SECPCNCD is in place for implementa- tion. Additional con- tracts may be needed between SECFCNCD and species that are to receive SMP weter. No major legal or in- stitutional problem is anticipated.	Project depends upon SWP mutar delivered to Samta Them or WAFB wig Sam Antonio Subares. Duit cost will be de- pendent on the amount of water delivered to other subaress.

* Not determined.

** Water yield cannot be estimated within reasonable accuracy. *** Rose not include any of the entitiement of VAPS; the yield would be delivered to Casualia. Note: Options in CAPITAL LETTERS are included in selection of alternatives.

	Incre- mental	Zetimat projec	ed 1984 t costs		Net	Water quality	Legal	
Water supply option	project yield (AFY)	lit cost, (Mil.\$)	Deit cost, (\$/AF)	Bagineering considerations	energy required (kWh/AF)	and environmental considerations	and institutional considerations	Renarks.
1. CACHUMA RESERVOIR s. CACHUMA RESERVOIR (EXISTING) + CONJ.US5	3500	6-9	76	22 new production wells would have to be con- structed,	Ninima I Nay provide	Fluctuation of Beasonal water level in excass of the existing water level changes	Auy changes in opera- tion of the reservoir would require the agreement of U.S.Bureau	
					electric power	well as on environment.	Santa Ther River Water Conservation District (SYEWCD), and Cachuma Member Units.	
b. CACREMA BESERVOIR ERLCR.(27')	7770	51.7	264	The existing dam height would be reised 27 feet. The existing spillway would have to be disman- tled and a new spillway would have to be con- structed. A new intake tower for the Tecolote Tannel would have to be constructed. Constructed. Construction may require some lowering of the water surface, but not a major dewatering of the reservoir. Highway reinforcement needed.	Minimal May provide hydro- electric power	A portion of a county park would be inundated Most of the land that would be inundated is owned by USBR. Water would be potable and suitable for irrigation. Unavoidable adverse effects require mitige- tion measures. Fisheries resource may be disturbed during construction.	USER has indicated that congressional suthori- mation would be meeded to enlarge the reservoir. USER, SYRNCD, and Cachuma Kumber Units would have to agree to any enlargement before it could be sponsored and authorized.	A preliminary review by DWR indicates that the project wirrants a feasibility-level investigation.
C. CACHUMA RESERVOIR RHING.(27') + CONJ.USE	13520	60.8	126	29 new production wells would have to be con- structed. Modified operation of the rever- vair and ground water basin would be needed.	Minimal May provide bydro- electric power	Fluctuation of seasonal reservoir water level in excess of the existing water level changes may have some effects on water quality as well as on environment.	Any enlargement and changes in operation of the reservoir would require the agreement of USSR, STRNCD, and Cachuma Member Units.	202 (60.8/51.7x100) in- crease in first cost of project, due to con- junctive use, would result in 74% (13520/7770x100) increase in production.

TABLE 32 SUMMARY OF SANTA YREZ (UPPER) SUBAREA WATER SUPPLY OPTIONS

	· · · · ·	· · · · · · · · · · · · · · · · · · ·		······································		·····		<u> </u>
Water supply option	Incre- mental project yield (AFY)	Estimato project lst cost, (Mil.\$)	ed 1984 t costs Unit cost, (\$/AF)	Engineering considerations	Nat energy required (kWh/AF)	Water quality and environmental considerations	Legal and institutional considerations	Remarks
d, Cachuma Reservoir Enlrg.(33')	9270	61.1	300	The existing dam height would be raised 33 feet. The existing spillway would have to be disman- tled and a new spillway would have to be con- structed. A new intake tower for the Tecolote Tunnel would have to be constructed. About 0.5 mile of High- way 154 would have to be raised. The outlet facilities would have to be extended 400 feet. Construction may require some lowering of the water surface, but not a major dewatering of the reservoir.	Minimal May provide hydro- electric power	A portion of a county park would be inun- dated. Mitigation measures required. Nost of the land that would be inundated is owned by USBR. Water would be potable and suitable for irrigation. Unavoidable adverse effects require mitiga- tion measures. Fisheries resource may be disturbed during construction.	USBR has indicated that congressional authori- zation would be needed to enlarge the reservoir. USBR, SYRWCD, and Cachuma Member Units would have to agree to any enlargement before it could be sponsored or authorized.	A preliminary review by DWR indicates that the project warrants a feasibility-level investigation.
e. CACHDMA RESERVOIR ENLRG.(33") + CONJ.USE	15013	71.0	140	30 new production wells need to be constructed. Operation of reservoir and ground water basins would have to be modified.	Minimal May provide hydro- electric power	Pluctuation of acasonal reservoir water level in encess of the exist- ing water level changes may have some effects on water quality and environment.	Any enlargement and changes in operation of the reservoir would have to be approved by USBR, SY2WCD, and Cachuma Member Units.	<pre>16% (71.0/61.1x100) increase in first cost of project, due to conjunctive use, would increase the production by 62% (15010/9270x100)</pre>

TABLE 32 (Continued) SUMMARY OF SANTA YNEZ (UPPER) SUBAREA WATER SUPPLY OPTIONS

. -

.

.

f. CACHUNA RESERVOIR ENLRG.(42°)	10590	80.C	361	The existing dam height would be raised 42 feet. The existing spillway would have to be disman- tled and a new spillway would have to be con- structed. A new intake tower for the Tecolote Tunnel would have to be constructed. About 1.2 miles of High- way 154 would have to be relocated.	Minimal May provide hydro- electric power	A portion of a county park would be inundated. Mitigation measures required. Nost of the land that would be inundated is owned by USBR. Water would be potable and suitable for irrigation.	USBR has indicated that congressional authori- mation would be needed to enlarge the reservoir. USBR, STEWCD, and Cachum Member Units would have to agree to any enlargement before it could be sponsored and authorized.	A preliminary review by DWR indicates that the project warrants a fessibility-level investigation,
			-	The outlet facilities would have to be extended 400 feet. Construction may require some lowering of the water surface, but not a major dewatering of the reservoir.		Unavoidable adverse effects require mitiga- tion measures. Fisheries resource may be disturbed during construction.		
S. CACEUMA RESERVOIR ENLRG.(42') + CONJ.USE	17490	90.0	172	32 new production wells meed to be constructed. Operation of teservoir and ground water basins would have to be modified.	Hinimal Hay provide hydro- electric power	Fluctuation of seasonal reservoir water level in excess of the exist- ing water level changes may have some effects on water quelity and environment.	Any colargment and changes in operation of the reservoir would have to be approved by USBR, SYRWCD, and Cachuma Member Units.	13% (90/80x100) increase in first cost of pro- ject, due to conjunctive use, would increase the production by 65% (17490/10590x100).

-

·__

. .

TABLE 32 (Continued) SUMMARY OF SANTA YMEZ (UPPER) SUBAREA WATER SUPPLY OPTIONS

Water supply optics	Incre- mental project yield (APT)	Estimat projec lst cost, (Mil.\$)	ed 1984 t costs Unit cost, (\$/AF)	Engineering considerations	Het energy required (kWh/AF)	Water quality and environmental considerations	Legal and institutional considerations	Remarks
<ol> <li>Hot Springs Reservoir (excluding Lompoc Pipeline)</li> <li>Hew Gibraltar RESERVOIR</li> </ol>	5920	73.6	936	Highway 154 and Paradise Road would have some relecation. (The Lompoc Pipeline could be included as part of this project.)	Minimal May provide hydro- electric power	Portion of Paradise area would be inundated. Most of the reservoir area is privately owned. Impairment of present water supply facilities not fully analysed. Would offer additional recreational opportuni- ties; waterfowl could use reservoir resting area along the Pacific Coast migration route. Unavoidable adverse effects require, mitiga- tion measures. Pisheries resource may be disturbed during construction.	Need to establish yield obligation by prior rights. All established water rights must be satisfied. Must appropriate water through State Water Re- sources Control Board (SWRCB). Must enter into agree- ments with a number of agencies. Water rights have not been fully analyzed.	A preliminary review by DWR indicates that a feasibility-level in- vestigation should be deferred until after a study is done regarding the enlargement of Cachuma Reservoir or constructing new Gibraltar Reservoir.
. REW GIBRALTAR RESERVOIR	8335	98.8	869	Existing inlet-outlet system must de re- placed. Engineeringly feasible.	Minimal May provide hydro- electric power	No homes, roads, or utilities threatened. Increased recreational opportunities. Unavoidable adverse effects require witigation measures. Fisheries resource may be disturbed during construction. The habitat of the least Bell's virce may be impacted.	Need to establish yield obligations by prior right. All established water rights must be satis- fied. Must appropriate water through SWRCB. Must enter into agree- meats with a number of agencies.	Preliminary review by DWR indicates that the project warrants a feasibility-level in- vestigation.

			T.	1313 31			
SUDMARY	0₽	SAU	101100110	SUBAREA	MATER.	SUPPLY	OPTIONS

		incre-	Estimate	d 1984					
			ртојесс	COSCS			Water quality	Legal	
P	ater monly	project.	100	CHALC	Tandananian	energy	and .	bas	
-	eptine	(ATT)	freit AD	(8/47)	CONTRACTION .	Tequires	dSY1fonmental	institutions]	
			(AIL. 4)	(4142)	CONFIGURATIONS		CONSIGEREIONS	considerations	Lunariu
	San Antonio Creek Reservoir	1500	30.0		3 possible dem sites were identified in a previous atudy, however, feasibi- lity was not established for any of the sites. The reservoir would be situated on deep, highly permeable alluwium.	Minime1	San Antonio Creek and Barks Slough are en- vironmentally sensitive areas bacsume of the presence of an enden- gered species.		Vary poor dam mite.
. 2.	Yatorehed Management	*	*	•	Management areas must be upstream from reservoir or ground water recharge facilities in order to regulate the additional runoff.	Pakucen. –	Whether the sediment yield effects are bene- ficial or detrimental will depend on the care exercised in the untagement program.	A Coordinated Essource Management Agreement will be required to secure the cooperation of other state and federal resource and land management agancies.	Vagetation management can be initiated and benefits realized with- in 2 or 3 years after bend for additional streamflow is accertained.
3.	Vesther Kodification	2090 to 4090**	*		Determination of sug- montad water supply in surface reservoirs would require detailed opera- tional studies. Cloud seeding appears to be most effective when conducted from sirersft. Cloud seeding is most productive during wet years and least produc- tive in dry years.	Minime1	The effects of in- creased seasonal rain- full on fish and wild- life are impossible to determine.	Cloud seeding in one area could modify pra- cipitation in another area.	This project is ou- going; new SWP yield would result only from additional cloud seading.
4.	STATE MATER PROJECT	23***	¥/A	598 to 774	Routing vis Coests! Branch and LCDS (Lompoc- VAFB Lateral: low energy and pressure routs). Engineeringly feasible. Coestal Branch would re- quire 3 pumping plants, five regulatory storage sites, ade power recovery plant, and pipeline. The LCDS facility required would include one pumping plant plus pipeline.	2220	The quality of SVP water would be good. Average 1984 constitu- ents (in mg/L at Check 5 - Coastal Breach) are shown in Table 15.	Contract between State and SECPCNCD is in place for implementa- tion. Additional con- tracts may be needed between SECFCNCD and species that are to receive SMP weter. No major legal or in- stitutional problem is anticipated.	Project depends upon SWP mutar delivered to Samta Them or WAFB wig Sam Antonio Subares. Duit cost will be de- pendent on the amount of water delivered to other subaress.

* Not determined.

** Water yield cannot be estimated within reasonable accuracy. *** Rose not include any of the entitiement of VAPS; the yield would be delivered to Casualia. Note: Options in CAPITAL LETTERS are included in selection of alternatives.



Copy of document found at www.NoNewWipTax.com

option are summarized in Table 32, and their locations are shown on Figure 23. Maps depicting, in greater detail, proposed dam or reservoir sites and areas subject to inundation are on file at DWR and SBCFCWCD offices.

The <u>lower</u> portion of <u>Santa Ynez Subarea</u>, often referred to as the Lompoc Valley, with an elevation ranging from sea level to 400 feet above sea level, is separated from upper Santa Ynez by some low hills through which the Santa Ynez River has cut a channel. (See Figure 24.) The City of Lompoc, Vandenberg Village, Mission Hills, Vandenberg Air Force Base, and large flower seed and truck farms are found in this part of the subarea. Projected water demand for this portion of Santa Ynez Subarea exceeds the available supply and new sources of water will be needed to satisfy future demands.

After evaluating several water supply options described in Table 33, Salsipuedes Reservoir and the desalination of sea water options were selected, in addition to those options selected for the upper Santa Ynez, most promising projects for AS the supplemental water. With the exception of water from the SWP, none of the options selected for upper Santa Ynez can be utilized in lower Santa Ynez without the addition of a pipeline (referred to as pipeline from Lompoc Pipeline). This Cachuma Reservoir to Lompoc would cost additional \$16.2 to \$26.7 million, an depending upon pipe size. The cost for that portion of the pipeline serving the upper Santa Ynez subarea would probably be shared between the upper and lower Santa Ynez.

As mentioned in Chapter III of this report, the water from existing sources of supply in the lower Santa Ynez Subarea is not of a good quality. The quality can be improved by importing better quality water and blending it with the water from local sources.

For all the options concerning Santa Ynez River (i.e., the existing or enlarged Cachuma or New Gibraltar Reservoirs) explained below, computer analyses for determination of yield were based on the following:

- o Jameson Reservoir and Doulton Tunnel safe yield mode = 1,480 acre feet per year.
- o Gibraltar Reservoir and Mission Tunnel plus a portion of the Santa Barbara ground water basin supply operated in a draft mode (with a combined constant annual yield of 7,000 acre-feet). Ground water pumpage to make up the whole 7,000 acre-feet is needed only during dry periods when the entire 7,000 acre-feet is not available from the reservoir and tunnel sources.

It should be noted, for the purpose of this study, that this mode of operation of the existing Gibraltar Project is simply to serve as a base condition from which relative yields of an enlarged Gibraltar Reservoir may be determined.

The actual distribution of these yields and the portion that would be allocated to the City of Santa Barbara would have to be agreed upon among the U.S. Bureau of Reclamation, Santa Barbara City, and other South Coast and Santa Ynez water purveyors. If additional analyses are required in order to reach an agreement, they can readily be performed as an aid to selecting a Santa Ynez River reservoir project for possible feasibility level investigation.

- o Cachuma Reservoir and Tecolote Tunnel safe yield mode = 27,800 acre-feet per year.
- o Downstream water rights are met as required by Gin Chow Court Decision and State Water Resources Control Board (SWRCB) Water Rights Decision 73-37.

<u>Conjunctive Use.</u> Generally, conjunctive use consists of managing surface reservoirs and ground water resources in a coordinated manner to obtain more water than would be developed otherwise. With conjunctive use, surface water would be used extensively

	Incre- mental	Zetimat projec	ed 1984 t costs		Net	Water quality	Legal		
Water supply option	project yield (AFY)	lit cost, (Mil.\$)	Deit cost, (\$/AF)	Bagineering considerations	energy required (kWh/AF)	and environmental considerations	and institutional considerations	Benerits	
1. CACHUMA RESERVOIR s. CACHUMA RESERVOIR (EXISTING) + CONJ.US5	3500	6-9	76	22 new production wells would have to be con- structed,	Ninima I Nay provide	Fluctuation of Beasonal water level in excass of the existing water level changes	Auy changes in opera- tion of the reservoir would require the agreement of U.S.Bureau		
					electric power	on water quality as well as on environment.	Santa Ther River Water Conservation District (SYEWCD), and Cachuma Member Units.		
b. CACREMA BESERVOIR ERLCR.(27')	7770	51.7	264	The existing dam height would be reised 27 feet. The existing spillway would have to be disman- tled and a new spillway would have to be con- structed. A new intake tower for the Tecolote Tannel would have to be constructed. Constructed. Construction may require some lowering of the water surface, but not a major dewatering of the reservoir. Highway reinforcement needed.	Minimal May provide hydro- electric power	A portion of a county park would be inundated Most of the land that would be inundated is owned by USBR. Water would be potable and suitable for irrigation. Unavoidable adverse effects require mitige- tion measures. Fisheries resource may be disturbed during construction.	USER has indicated that congressional suthori- mation would be meeded to enlarge the reservoir. USER, SYRNCD, and Cachuma Kumber Units would have to agree to any enlargement before it could be sponsored and authorized.	A preliminary review by DWR indicates that the project wirrants a feasibility-level investigation.	
C. CACHUMA RESERVOIR RHING.(27') + CONJ.USE	13520	60.8	126	29 new production wells would have to be con- structed. Modified operation of the rever- vair and ground water basin would be needed.	Minimal May provide bydro- electric power	Fluctuation of seasonal reservoir water level in excess of the existing water level changes may have some effects on water quality as well as on environment.	Any enlargement and changes in operation of the reservoir would require the agreement of USER, STRUCD, and Cachuma Member Units.	202 (60.8/51.7x100) in- crease in first cost of project, due to con- junctive use, would result in 74% (13520/7770x100) increase in production.	

TABLE 32 SUMMARY OF SANTA YREZ (UPPER) SUBAREA WATER SUPPLY OPTIONS

	· · · · ·	· · · · · · · · · · · · · · · · · · ·		······································		·····		<u> </u>
Water supply option	Incre- mental project yield (AFY)	Estimato project lst cost, (Mil.\$)	ed 1984 t costs Unit cost, (\$/AF)	Engineering considerations	Nat energy required (kWh/AF)	Water quality and environmental considerations	Legal and institutional considerations	Remarks
d, Cachuma Reservoir Enlrg.(33')	9270	61.1	300	The existing dam height would be raised 33 feet. The existing spillway would have to be disman- tled and a new spillway would have to be con- structed. A new intake tower for the Tecolote Tunnel would have to be constructed. About 0.5 mile of High- way 154 would have to be raised. The outlet facilities would have to be extended 400 feet. Construction may require some lowering of the water surface, but not a major dewatering of the reservoir.	Minimal May provide hydro- electric power	A portion of a county park would be inun- dated. Mitigation measures required. Nost of the land that would be inundated is owned by USBR. Water would be potable and suitable for irrigation. Unavoidable adverse effects require mitiga- tion measures. Fisheries resource may be disturbed during construction.	USBR has indicated that congressional authori- zation would be needed to enlarge the reservoir. USBR, SYRWCD, and Cachuma Member Units would have to agree to any enlargement before it could be sponsored or authorized.	A preliminary review by DWR indicates that the project warrants a feasibility-level investigation.
e. CACHDMA RESERVOIR ENLRG.(33") + CONJ.USE	15013	71.0	140	30 new production wells need to be constructed. Operation of reservoir and ground water basins would have to be modified.	Minimal May provide hydro- electric power	Pluctuation of acasonal reservoir water level in encess of the exist- ing water level changes may have some effects on water quality and environment.	Any enlargement and changes in operation of the reservoir would have to be approved by USBR, SY2WCD, and Cachuma Member Units.	<pre>16% (71.0/61.1x100) increase in first cost of project, due to conjunctive use, would increase the production by 62% (15010/9270x100)</pre>

TABLE 32 (Continued) SUMMARY OF SANTA YNEZ (UPPER) SUBAREA WATER SUPPLY OPTIONS

. -

.

.

f. CACHUNA RESERVOIR ENLRG.(42°)	10590	80.C	361	The existing dam height would be raised 42 feet. The existing spillway would have to be disman- tled and a new spillway would have to be con- structed. A new intake tower for the Tecolote Tunnel would have to be constructed. About 1.2 miles of High- way 154 would have to be relocated.	Minimal May provide hydro- electric power	A portion of a county park would be inundated. Mitigation measures required. Nost of the land that would be inundated is owned by USBR. Water would be potable and suitable for irrigation.	USBR has indicated that congressional authori- mation would be needed to enlarge the reservoir. USBR, STEWCD, and Cachum Member Units would have to agree to any enlargement before it could be sponsored and authorized.	A preliminary review by DWR indicates that the project warrants a fessibility-level investigation,
			-	The outlet facilities would have to be extended 400 feet. Construction may require some lowering of the water surface, but not a major dewatering of the reservoir.		Unavoidable adverse effects require mitiga- tion measures. Fisheries resource may be disturbed during construction.		
S. CACEUMA RESERVOIR ENLRG.(42') + CONJ.USE	17490	90.0	172	32 new production wells meed to be constructed. Operation of teservoir and ground water basins would have to be modified.	Hinimal Hay provide hydro- electric power	Fluctuation of seasonal reservoir water level in excess of the exist- ing water level changes may have some effects on water quelity and environment.	Any colargment and changes in operation of the reservoir would have to be approved by USBR, SYRWCD, and Cachuma Member Units.	13% (90/80x100) increase in first cost of pro- ject, due to conjunctive use, would increase the production by 65% (17490/10590x100).

-

·__

. .

TABLE 32 (Continued) SUMMARY OF SANTA YMEZ (UPPER) SUBAREA WATER SUPPLY OPTIONS

Water supply optics	Incre- mental project yield (APT)	Estimat projec lst cost, (Mil.\$)	ed 1984 t costs Unit cost, (\$/AF)	Engineering considerations	Het energy required (kWh/AF)	Water quality and environmental considerations	Legal and institutional considerations	Remarks
<ol> <li>Hot Springs Reservoir (excluding Lompoc Pipeline)</li> <li>Hew Gibraltar RESERVOIR</li> </ol>	5920	73.6	936	Highway 154 and Paradise Road would have some relecation. (The Lompoc Pipeline could be included as part of this project.)	Minimal May provide hydro- electric power	Portion of Paradise area would be inundated. Most of the reservoir area is privately owned. Impairment of present water supply facilities not fully analysed. Would offer additional recreational opportuni- ties; waterfowl could use reservoir resting area along the Pacific Coast migration route. Unavoidable adverse effects require, mitiga- tion measures. Pisheries resource may be disturbed during construction.	Need to establish yield obligation by prior rights. All established water rights must be satisfied. Must appropriate water through State Water Re- sources Control Board (SWRCB). Must enter into agree- ments with a number of agencies. Water rights have not been fully analyzed.	A preliminary review by DWR indicates that a feasibility-level in- vestigation should be deferred until after a study is done regarding the enlargement of Cachuma Reservoir or constructing new Gibraltar Reservoir.
. REW GIBRALTAR RESERVOIR	8335	98.8	869	Existing inlet-outlet system must de re- placed. Engineeringly feasible.	Minimal May provide hydro- electric power	No homes, roads, or utilities threatened. Increased recreational opportunities. Unavoidable adverse effects require witigation measures. Fisheries resource may be disturbed during construction. The habitat of the least Bell's virce may be impacted.	Need to establish yield obligations by prior right. All established water rights must be satis- fied. Must appropriate water through SWRCB. Must enter into agree- meats with a number of agencies.	Preliminary review by DWR indicates that the project warrants a feasibility-level in- vestigation.

b. NEW GIBRALTAR RESERVOIR + CONJ. DSE	13120	104.4	427	18 new production wells would have to be con- structed. Modifications of the reservoir and ground water basin operation would be needed.	Minimal Hay provide bydro- electric power	Fluctuation of seasonal water level in encess of the existing water level changes may have some effects on water quality as well as environment. See additional comments under (a) above.	Need to establish yield obligations by prior right. All established water rights must be satis- fied. Nust appropriate water through SWNCB. Enst enter into agree- ments with a number of agencies.	67 (104.0/98.8x100) in- crease in first cost, due to conjunctive use, will increase the pro- duction by 57% (13120/ 8335x100).
4. Compose Reservoir (excluding Lompoc Pipeline)	8000	97.5	<b>909</b>	The Santa Ther fault passes about 1.5 miles south of demsite. Rock in the left abut- ment has high permeabi- lity. New access roads would have to be constructed. (The Lompoc Pipeline could be included as part of this project.)	Minimal May provide hydro- electric power	Water would be potable and suitable for irrigation. Most of the reservoir area is public pro- perty. The reservoir would be vulnarable to reservoir siltation; however, a provision for siltation can be designated to the reservoir. Unavoidable adverse effects require mitiga- tion measures. Pisheries resource may be disturbed during	Water rights have not been fully studied. Must enter into agree- ments with a number of agencies.	A preliminary review by DWR indicates that a feasibility-level in- vestigation should be deferred until after a study is done regarding the enlargement of the Cachuma Reservoir or building new Gibralter Reservoir.
5. Watershed Management	*	*		Management areas must be upstream from reservoir or ground water recharge facilities in order to regulate the additional rumoff.	Unknown.	construction. Whether the sediment yield effects are bene- ficial or detrimental will depend on the care exercised in the management program.	A Coordinated Rescorce Management Agreement will be required to secure the cooperation of other state and federal resource and land management agencies.	Vegetation management car be initiated and benefits realized with- in 2 or 3 years after need for additional streamflow is ascertained.

÷

Water supply option	Incre- mental project yield (AFY)	Estimat projec lat cost, (Mil.\$)	ed 1984 t coats Unit coat, (\$/AF)	Engineering considerations	Net energy required (kWh/AF)	Water quality and environmental considerations	Legal and institutional considerations	Remarka
6. Weather Hodification	3000 to 6000+*	*	*	Determination of aug- mented water supply in surface reservoirs would require detailed opera- tional studies. Cloud seeding appears to	Mis ing l	The effects of in- creased measonal rain- fall on fish and wild- life are impossible to determine.	Cloud seeding in one area could modify pre- cipitation in another area.	This project is on- going; new SWP yield would result only from additional cloud seeding.
				Conducted from mircraft. Cloud seeding is most productive during wet years and least produc- tive in dry years.	-			
7. STATE WATER PROJECT	2578	N/A	830	Importation of SWP water to the upper Santa Yner Subarea would require the the completion of the Coastal Branch and ICDS (two pumping plants, three regulatory storage sites - tanks, plus pipeline.)	3130	The quality of SWP water would be good. Average 1984 constitu- ants (in mg/L at Check 5-Coastal Branch) are abown in Table 16.	Contract between State and SECFCWCD is in place for ease of imple- mentation. Contracts between SECFCWCD and agencies that are to receive SWP water may be meeded. No major legal or institutional problem is anticipated.	A preliminary review by DWA indicates that the proposed project is not compatitive economi- cally with alternative sources of supply svailable to SWP.

TABLE 32 (Continued) SUMMARY OF SANTA YNEZ (UPPER) SUBARRA VATER SUPPLY OFFICES

Note: Options in CAPITAL LETTERS are included in selection of alternatives.

.

.

Copy of document found at www.NoNewWipTax.com

-



- 5, - 10.

DEPARTMENT OF WATER RESOURCES, SOUTHERN DISTRICT, 1985

Copy of document found at www.NoNewWipTax.com



DEPARTMENT OF WATER RESOURCES, SOUTHERN dough Bhe Hound & www.NoNewWipTax.com

	Incre- mental	Incre- Estingte mental <u>project</u> project 1st		84 te	Net	Water quality	T		
Water supply option	project yield (AFT)	lst cost, (Mil.\$)	Unit cost, (\$/AF)	Engineering	evergy required (Wh/Ar)	and environmental considerations	end institutional considerations	Romarke	
1. CACRUMA RESERVOID								<u></u>	
<ul> <li>a. Cachuma</li> <li>Reservoir</li> <li>(BXISTING)</li> <li>+ Conj.Use</li> </ul>	3500	6.9	76	22 new production wells would have to be com- structed.	Minimal	Fluctuation of seasonal water level in excess of the existing water level changes	Any changes in opera- tion of the reservoir would require the agreement of U.S.Jureau		
Plus Lompoc Pipeline	4000	16.2	498		May provide hydro- electric power	on water quality as well as on environment.	of Reclamation (USBR), Santa Yner River Veter Couservation District, (SYNWCD), and Cachuma Namber Units.		
b. CACHUMA LASERVOIR ENLAG. (27°)	7770	51.7	1007	The existing dam beight would be raised 27 feet.	Miniwa] Nav	A portion of a county park would be inundated	UBA has indicated that congressional authori-	A preliminary review by DMR indicates that the	
(INCLUDING LONPOC PIPELINE)	-			The axisting spillway would have to be dis- mentled and a new spillway would have to	provide hydro- electric power	Most of the land that would be inundated is owned by USBR.	to enlarge the reservoir.	project warrants a feasibility-lavel in- vastigation.	
				be constructed. A new intake tower for the Tecolote Tunnel would have to be con- structed.		Water would be potable and suitable for irrigation. Unavoidable adverse effects require witiga-	USBR, SYRWCD, and Cachume Mamber Units would have to agree to any culargement before it could be sponsored and authorized.		
				Construction may require some lowering of the water surface, but not a major dewatering of the reservoir.		tion measures. Fisheries resource may be distarbed during construction.			
		-		Highway reinforcement needed.					
C. CACEUMA RESERVOIR INLAG.(27') + CONJ.USE (IRCLUDING LOMPOC PIPELINE)	13520	50.8	<del>6</del> 24	29 new production wells would have to be con- structed. Modified operation of the reser- voir and ground water basin would be needed.	Minimal May ptowide bydro- electric power	Fluctuation of seasonal reservoir water level in excess of the existing water level changes may have some effects on water quality as well as on	Any enlargement and changes in operation of the reservoir would require the agreement of USBR, STRWCD, and Cachumm Member Units,	20% (60.8/51.7x100) in- crease in first cost of project, due to con- junctive use, would re- sult in 74% (13520/7770x100) increase in production.	

TABLE 33 SUMMARY OF SANTA YNEZ (LOWER) SUBAREA RATER SUPPLY OFTIONS

Copy of document found at www.NoNewWipTax.com

	Incre- mental	Estinet projec	ed 1984 t coste		Net	Water quality	Legal	
Water supply option	project yield (AFY)	lst cost, (Mil,\$)	Unit cost, (\$/AF)	Engintering considerations	energy required (RMh/AF)	and environmental considerations	and institutional considerations	Imarka
d. Cachuma Reservoir Enlrg.(33 Plus Lomp Pipeline	9270	61.1	300 498	The existing dam height would be raised 33 feet. The existing spillway would have to be disamn- tled and a new spillway would have to be con- structed. A new intake tower for the Tecolote Tunnel would have to be constructed. About 0.5 mile of High- way 154 would have to be raised. The outlet facilities would have to be extended 409 feet. Construction may require some lowering of the water surface, but not a major dewatering of the reservoir.	Minimal May provide bydro- electric power	A portion of a county park would be inundated. Mitigation measures required. Nost of the land that would be inundated is owned by USBE. Water would be potable and suitable for irrigation. Unavoidable adverse effects require witiga- tion measures. Fisheries resource may be disturbed during construction.	USBE has indicated that congressional authori- sation would be needed to enlarge the reservoir. USBE, STEWCD, and Cachumn Number Units would have to agree to any colargement before it could be sponsored and authorixed.	A preliminary review by Dim indicates that the project warrants a feasibility-level investigation.
e. Cachuma Reservoir Enlg.(33' + Conj.Us Plus Lomp Pipeline	15013	71.0	140 496	30 new production wells need to be constructed. Dperation of reservoir and ground water basing would have to be modified.	Minimal Hay provide hydro- electric power	Fluctuation of seasonal reservoir water level in excess of the exist- ing water level changes may have some effects on water quality and environment.	Any culargement and changes in operation of the reservoir would have to be approved by USBR, STRWCD, and Cachuma Member Units.	16% (71.0/61.1x100) increase in first cost of project, due to con- junctive use, would in- crease the production by 62% (15010/9270x100)

TABLE 33 (Continued) SUMMARY OF SANTA YMEZ (LOWER) SUBAREA WATER SUPPLY OPTIONS

<pre>f. CACHUMA RESERVOIR ENLEG.(42') (Including Lompoc Pipeline)</pre>	10590	80.0	1083	The existing dam height would be raised 42 feet. The existing spillway would have to be disman- tled and a new spillway would have to be con- structed. A new intake tower for the Tecolote Tunnel would have to be constructed. About 1.2 miles of High- way 154 would have to be relocated. The outlet facilities would have to be extended 400 feet. Construction may require some lowering of the water surface, but not a mejor dewstering of the	Minimal Hay provide hydro- electric power	A portion of a county park would be inundated. Not of the land that would be inundated is owned by USBR. Water would be potable and suitable for irrigation. Unavoidable adverse effects require mitign- tion measures. Fisheries resource may be disturbed during construction.	USBR has indicated that congressional authori- sation would be needed to enlarge the reservoir. USBR, STRWCD, and Gachuma Member Units would have to agree to any enlargement before it could be sponsored and authorized.	A preliminary review by DWR indicates that the project warrants a feasibility-level investigation.
g. CACHUMA ESERVOIR ENLIG.(42') + CONJ.USE (Including Lompoc Pipeline)	17490	90.0	573 to 850	32 new production wells need to be constructed. Operation of reservoir and ground water basins would have to be modified.	Kinimal Kay provide hydro- electric power	Fluctuation of sessonal reservoir mater level in excess of the exist- ing water level changes may have some effects on water quality and environment.	Any enlargement and changes in operation of the reservoir would have to be approved by USBR, SYRWCD, and Cachumm Member Units.	13X (90/80x100)increase in first cost of pro- ject, due to conjunc- tive use, would in- crease the production by 65X (1749G/10590x100).

-

- -

00 N

				TABLE	33 (Cer	tinued)		
SUHMARY	0F	SARTA	MEZ.	(LOWER	) SUBARI	A VATER	SUPPLY	OPTIONS

	Incre-	Batimat	ed 1984				· · · · · · · · · · · · · · · · · · ·	T
	mental	projec	t coste		Bat			
	project	1 It	Unit		Net	Water quality	Legal	-
Water supply	yield	cost.	cost.	Zngigeering	Techired		and	
option	(AFY)	(Hi1.\$)	(\$/AT)	considerations	(NUL (AP)	environdentii	institutional	
	<u>├──</u> ··──				· ***0/ // /		considerations	1 anarts
2. Hot Springs	5920	73.6	936	Righway 154 and Paradise	Kininal	Portion of Paredise	Need to establish to 14	
Menervoir				Road would have some		area would be inundated.	obligation by prior	A preliminary review by
Ping Lemone	6000	14.9	400	relocation.	Hay	Most of the reservoir	Tights.	forestation a
Pipeline	4000	10.2	495	(m	provide	ares is privately owned.	-	Teasibility-lavel 10-
		-		(ine Lompot ripeline	hydro-	· · _	All established water	deferred matil offers
		i		part of this project.)	electric	Impairment of present	rights must be	study is done reparding
				you a our projectly	puter	not fully males a	satisfied.	the salargement of
	1					Would offer additional	March	Cachuma Isservoir or
						recreational oncortoni-	through State Water	constructing new
					Ī	ties; waterfowl could	BOUTCES CONTRol Roard	Gibraltar Reservoir,
						use reservoir resting	(SWICE).	
1						area along the Pacific		
						Coast migration route.	Hust enter into agree-	
	1	].				Insvoidsble stresse	ments with a number of	•
						effects require mities.	agencies.	
	· ·					tion measures.	Water visite have not	
							been fully melward.	
						Fisheries resource may	,,	
						be disturbed during		
3. HEW GIBRALTAR						construction,		
LESERVOIR								
a. New	8335	98.8	869	Existing inlet-outlet	Minimal	Potential disturbance	Head to establish state	
Gibraltar				system must be re-		of habitat 6 endancered	obligations by prior	Preliminary review by
Keservolt				placed.	May	species.	Tight.	Deal indicates that the
	4000	16.2	100	·	provide			feasibility-lavel in
Pipeline	4000	10.2	470	Angineeringly reasible.	hydro-	Wo homes, roads, parks,	All established water	vestigation.
				Construction would not	electric	or utilities threatened	rights must be satis-	
				disturb emistine water	boast	Treresed services	fied.	Alternative construc-
1	ļ			supplies, since devater-		Cuportunities.	Must survey and	tion by roller com-
1				ing of existing resor-			through Simca	pacted concrete was
				voir would not be		Unavoidable adverse		st this dentity
1				tëquired,		effects require mitiga-	Must enter into agree-	as core campite.
1				Liferate Labor 61. 1		tion measures.	ments with a number of	
	t l			APROIDS DECET DICOD		<b>m</b> ² - <b>1</b> 4	agencies.	
	[			rundff eintner		FIGHEFICS RESOURCE MAY		
				efficiencies.		construction.		
				··	-			
						The habitat of the		
						least Bell's vireo		
						be impacted.	]	]
l	<b>;</b>	I I		+ I		I		

b, XEW Ginraltal Reservoil + Conj.use	13120	104.4	427	18 new production wells would have to be con- structed. Modifications of the reservoir and ground water basin operation would be needed.	Minimal May provide bydro- electric power	Fluctuation of seasonal water level in excess of the existing water level changes may have some effects on water quality as well as environment. See additional comments	Need to establish yield abligations by prior right. All established water rights must be satis- fied. Must appropriate water	67 (104.0/98.8x100) in- crease in first cost of project, due to con- junctive use, would in crease the production by 57% (13120/8335x100) Considering the new Cibrelton Production
						in (a) above.	through SWRCB. Must enter into egree- ments with a number of egencies.	tion, transportation fa- cilities would have to be upgraded & modified from the south portal of Mission Tunnel to Lauro Reservoir. Also, there exists an excell- ent hydroelectric power generation potential at the Lauro Reservoir.
4. Canuets Reservoir	90-00	97.5	909	The Santa Thes fault passes about 1.5 miles south of damaits. Rock in the left abut- wont has high permembi- lity. New access roads would have to be constructed.	Ninimel May ptovide bydro- electric power	Water would be potable and suitable for irrigation. Most of the reservoir area is public pro- perty. The reservoir would be vulnerable to reservoir miltetion; however, a provision for miltetion can be designed into the reservoir. Unavoidable adverse	Water rights have not been fully studied. Must enter into agree- ments with a cumber of agencies.	A preliminary review by DWR indicates that a feasibility-level in- vestigation should be deformed until after a study is done regarding the celargement of the Cachume Reservoir or building new Gibraltar Reservoir.
						offecto require mitiga- tion measures. Fisheries resource my be disturbed during construction.		
5. Waterebeć Nanigement	•	*	*	Menagement areas must be upstream from reservoir or ground water recharge facilities in order to regulate the additional runoff.	Unkaowa	Whether the sediment yield effects are bene- ficial or detrimental will depend on the cars exercised in the management program.	A Coordinated Resource Management Agreement will be required to secure the cooperation of other state and federal resource and land management agencies.	Vegetation management can be initiated and benefits realized with- in 2 or 3 years after need for additional streamflow is ascertained.

TABLE 33 (Continued) SUMMARY OF SANTA YNEZ (LOWER) SUBAREA WATER SUPPLY OPTIONS

		Inczer	Tatio-1	ad 1084			<u>_</u>		
	Water supply option	mental project yield (AFY)	project let cost, (Mil.\$)	Unit cost, (\$/AF)	Engineering considerations	Net energy required (Wh/AP)	Water quality end environmental considerations	Legal and institutional considerations	Remarks
	6. Weather Modification	2000 Eo 4000**	*	*	Determination of sug- mented water supply in surface reservoirs would require detailed opera- tional studies. Cloud seeding appears to be most effective when conducted from sircraft. Cloud seeding is most productive during wet years and least produc- tive in dry years.	Minina]	The effects of in- creased seasonal rain- fall on fish and wild- life are impossible to determine.	Cloud seeding in one area could modify pre- tipitation in another area.	This project is on- going; new SWP yield would result only from edditional cloud seeding.
	7. STATE WATER PROJECT	12090	¥/A	<del>69</del> 3 Eo 725	Importation of SWP water to the lower Sants Ther Subares would require the completion of the Constal Branch and ICDS facilities (a pumping plant and 3 regulatory storage sites plus pipeline).	2220	The quality of SWP water would be good. Average 1934 constitu- ents (in mg/L at Check 5-Coastal Branch) are shown in Table 16.	Contract between State and SECFCWGD is in place for ease of im- plementation. Contracts between SECFCWGD and Agencies that are to receive SWP mater may be meeded. No major legal or institutional problem is enticipated.	Unit cost will be de- pendent on the amount of water delivered to other areas within the County. Water quality in area would be enhanced.
	8, Lompoc Reservoir	16500	216.2	1022	An auxiliary dam and an additional dike are necessary in conjunction with this project. Extensive excavation in the foundation would be beeded to install an adequate cutoff wall. About 4.5 miles of State Highway 1 road reloca- tion would be decessary. There would be signifi- chait costs arsociated with outlet works and requirements for a major arguirements.	Pumping plants would be accided to de- liver water in stor- age; requir- ing 181 kWh/AF	The project would inun- date sizable tracts of productive ranch and farmland in the Santa Ynez River Velley.	It has not been decided how the yield of the project would be divided among agencies that could benefit from the project.	Studies for SECFCNCD & VAPE state that the project is not consi- dered a viable, cost- effective alternative. When reamelysed by the Bureau of Reclamation (USBR), following the 1969 flood, the project was not found economi- cally justified.
ļ					major spiliway.		1		

9. Low Lompoc Reservoir Surface Delivery Operation	3190	64.4	1867	Similar to Lampoc Reservoir. No flood control bane- fits would be derived from the project.	Winimal			
10. Lompor Off- stream Spreading	(See Engin- eering Consider- ations)	9.9		It would be difficult to convey diverted water from the marrows to the proposed spreading grounds. The ground water basin lacks sufficient storage space to make the pro- gram visble.	Minimal	Water quality in the ground water basin might be improved. It would be necessary for the State to pur- chase approximately 200 acres of land in the flood plain of the Santa Thes liver to develop spreading grounds. Ground water locally		A preliminary review by DMR indicates that the project does not warrant additional study.
						bigh in TDS for domes- tic and irrightion use.		
11. SALSIPUEDES RESERVOIR SUBFACE DELIVERY OPERATION	2850	33.5	922	Construction of a dam would require relocation of both State Highway 1 and Jalama Road. No recently active faults are known to pass through the dam or reservoir mites. Two large landslides have been mapped in the reservoir area. It has not been deter- mined if construction materiels are available.	Minimal Nay provide hydro- electric power	About 1000 acres of farm land would be in- undated by the reservoir. Wildlife communities in the area could be dis- placed and fisheries could be enhanced. Water quality in the Lompoc Plain Ground Water Basin could be improved by storing better quality water from high flows. The reservoir might in- undate potentially eco- nomically recoverable distomite deposits.	It has not been decided how the yield of the project would be divided among agencies that could banefit from the project. No significant legal problems have been identified.	A recent study for VAFB states that this pro- ject should be consi- dered as a potential source of supply.

- -

.

TABLE 33 (Continued) SUMMARY OF SANTA YMEZ (LOWER) SUBAREA WATER SUPPLY OPTIONS

Water supply option	Incre- mental project yield (AFY)	Estinat projec lat cost, (Mil.\$)	ed 1984 t costs Unit cost, (\$/AF)	Engineering considerations	Net energy required (kWh/AF)	Water quality and environmental considerations	Legal end institutionel considerations	lamarka
12. DESALIMATION OF SEA WATER	6433 to 12000	29.3 to 54.2	1040 to 1954	Treatment facilities, pumping stations, and pipelines can be con- structed at the proposed site to desirable stan- dards by accepted techniques.	7550	Dessited water will be for urban use with good water quality. Ninimum adverse en- wironmental impacts are expected during the construction of the de- selting plant and the transportation facilities. The use of local de- selted mater would help conserve the fresh water supplies of the area. Reliable water supply.	Agreements would be required among the various local agencies and DMR. Construction of the de- selting plant near the coast must be approved by the Coastal Commis- sion and the California Regional Water Quality Control Board, Central Coast Legion.	Very seergy intensive.

.

* Not determined.

** Water yield cannot be estimated within reasonable accuracy.

Note: Options in CAPITAL LETTERS are included in selection of alternatives.

when available, either directly or to recharge ground water basins. As a result, surface reservoirs would be drawn down more quickly than in a safe yield mode of operation, thus minimizing evaporation losses and maximizing the amount of storage capacity available for the next storm. At the same time, the use of ground water basins would be reduced, allowing the basins to fill without being subject to evaporation During wet years, the surface losses. reservoirs would be in a position to store more water and to experience less loss by spillage. During dry years, when reservoirs cannot supply normal amounts of water, the ground water basins would be relied upon to meet the shortage.

An estimated 3,500 to 6,900 acre-feet per year may be gained by conjunctive use operations in Santa Ynez and South Coast Subareas. An earlier version of a 10,000acre-foot per year addition to the water supply by conjunctive use was analyzed by consulting engineers and the Santa Barbara County Water Agency. This earlier version was a complex program involving injection wells, lower operating levels in Cachuma Reservoir, dewatering of the basins downstream from Cachuma, and construction of a pipeline to the lower Santa Ynez Valley. It also included, as in all conjunctive use analyses, the coordinated fulfilling of the water rights of all member agencies and prior downstream rights as modified by SWRCB Water Rights Decision 73-37.

Although it would develop a larger yield, the earlier version would do so at the expense of heavy drafts on the ground water basins; therefore, it was found unacceptable.

A new conjunctive use program has been modeled for the existing Cachuma Reservoir, the three enlarged versions, and the New Gibraltar Reservoir. The program is based on modified reservoir operations, control of surface water, tunnel water, and some ground water. It does not rely on injection of water or spreading, only on indirect storage during wet periods by surface delivery of Santa Ynez River water for direct use in areas that normally use ground water, with cessation of or decrease in amount of ground water pumped so that the basin builds up naturally until its water is pumped later during dry periods (also known as the in-lieu-of-pumping method). The South Coast and upper Santa Ynez Subareas' ground water basins would be involved. The agencies receiving conjunctive use water yield would have to agree on the parameters, location of new ground water facilities, use of existing wells, and distribution of ground water when needed.

Project yields, ground water basin storage requirements, and ground water pumpage capacities and frequencies were analyzed so that conjunctive use operations would not stress the reservoirs to the point of no surface (i.e., tunnel water only) deliveries in worst-case the drought vears. The worst-case drought delivery levels of surface plus tunnel waters were established at 70 percent of normal water deliveries occurring for most of the years in the hydrologic study period (1919-1984). Ground water withdrawal requirements were kept below the 200,000-acre-foot level. Results of the analysis are given in Table 34.

The present occasional high turbidity and seasonal quality variation of Cachuma Reservoir water delivered through the Santa Ynez outlet, which would be aggravated by a conjunctive use program, limits it mainly to agricultural use. The turbidity and quality problems are the result of taking water from a point close to the bottom of the reservoir. To correct these problems, the following three methods were considered, but not included in the costs:

- 1. Construct a new 20-cubic foot per second intake tower at Bradbury Dam, which forms Cachuma Reservoir. Approximate cost is \$2.5 million.
- 2. Construct a slanted 30-inch intake pipe to lay against the upstream face of the dam. Approximate cost is \$1.0 million.
- 3. Install a low-head floating pump at Bradbury Dam. Approximate initial cost is \$0.5 million plus annual cost of operation and maintenance.

	Incr	eased yie. -feet per	ld, vear	No.	Annusi	Initial capital cost (\$1,000)	
Reservoir	Reservoir	Conjunc- tive use	Total	of wells*	O&M cost, (\$1,000)		
Cachuma							
Existing		3,500	3,500	22	95	6,900	
Enlargement(27')	7,770	5,750	13,520	29	147	9,100	
Enlargement(33')	9,270	5,743	15,013	30	153	9,400	
Enlargement(42')	10,590	6,900	17,490	-32	170	10,000	
New Gibraltar	8,335	4,785	13,120	18	112	5,600	
*Pumping during the	worst-case	drought y	vear is as	sumed to 1		ell.	

TABLE 34 INCREASED YIELD AND COST OF CONJUNCTIVE USE OPERATIONS

Among the options considered were conjunctive use with the existing Cachuma Reservoir, enlarged Cachuma Reservoir (27-, 33-, and 42-foot enlargement), and New Gibraltar Reservoir.

Cachuma Reservoir Enlargement (27 feet). This option would add 27 feet to the height of Bradbury Dam, increasing the storage capacity of Cachuma Reservoir to 300,000 acre-feet. The increased capacity would add 7,770 acre-feet to the annual yield from Cachuma Reservoir. The dam enlargement, which may require some lowering of the water surface, but not a major dewatering of the reservoir, could cost \$51.7 million. The added yield would be shared by the South Coast and upper Santa Ynez and possibly the lower Santa Ynez Subareas.

Cachuma Reservoir Enlargement (33 feet). This option would add 33 feet to the height of Bradbury Dam, increasing the storage capacity of Cachuma Reservoir to 326,500 acre-feet. The increased capacity would add 9,270 acre-feet to the annual yield from Cachuma Reservoir. The added yield would be shared by the South Coast and upper Santa Ynez and possibly the lower Santa Ynez Subareas. The dam enlargement, which may require some lowering of the water surface, but not a major dewatering of the reservoir, would cost \$71 million. The cost was determined by straight line interpolation between the cost of the enlargements of 27 feet and 42 feet.

Cachuma Reservoir Enlargement (42 feet). This option would add 42 feet to the height Bradbury Dam, thus increasing the of storage capacity of the reservoir to 364,500 acre-feet. This would add 10,590 acre-feet the annual vield from Cachuma tο The enlargement, which may Reservoir. require some lowering of the water surface, but not a major dewatering of the reservoir, would cost \$80 million. The added yield would be shared by the South Coast and the upper Santa Ynez, and possibly the lower Santa Ynez Subareas.

New Gibraltar Reservoir. This reservoir would be created by construction of a dam approximately 0.8 mile downstream from the existing Gibraltar Dam. The existing dam site was not selected for enlargement because of the unfavorable geology and topography of the area for a higher structure at the existing site. The proposed new reservoir would have a surface area of 2,300 acres and a gross storage capacity of 175,000 acre-feet. It would have storage space for about 70 years' accumulation of silt before planned storage capacity would be affected, thereby solving the severe siltation problem of the existing Gibraltar

Reservoir. (The existing Gibraltar Reservoir has a surface area of 276 acres and a storage capacity of 9,000 acre-feet.) The proposed dam and reservoir, under a safe yield mode, would add 8,335 acre-feet per year to the annual yield of the present reservoir-tunnel-ground water system.

The dam would be 320 feet high and 1,570 feet long. The finished embankment would have a volume of 12.6 million cubic yards.

A pipeline to Lompoc could be included in this proposed project, if the Lompoc area were to participate. The pipeline would have to extend only from Cachuma Reservoir, although the actual yield (above existing yield conditions) would be developed by the construction of the new, enlarged Gibraltar Reservoir. Water allocated to the lower Santa Ynez from Cachuma Reservoir by water exchange would reach the lower Santa Ynez through the pipeline.

The dam construction would cost about \$98.8 million, excluding the cost of right-of-way and the cost of relocating utilities.

<u>State Water Project.</u> Delivery of the entitlement of 2,578 acre-feet into the upper Santa Ynez Subarea would require building a pipeline from the Santa Maria terminus to a turnout near Highway 154 at Santa Ynez, in addition to completion of the 83-mile Coastal Branch of the California Aqueduct. It would not be economically feasible to import SWP water to upper Santa Ynez without the participation of the South Coast Subarea.

Delivery of the SWP entitlement of 12,000 acre-feet to the lower Santa Ynez Subarea would require completing a pipeline from the terminus of the Coastal Branch to the Lompoc area, as well as the 83-mile Coastal Branch. The pipeline, which would be routed to minimize pumping along the way, would convey the water through Santa Maria, Casmalia, and Vandenberg Air Force Base to Lompoc. This lateral is commonly referred to as the Lompoc-VAFB Lateral and would be built as part of the ICDS. If the Lompoc-VAFB Lateral were built, it would require one pumping plant, 3 storage sites, and a 33-inch pipeline. The final configuration and cost would depend upon the actual level of participation in the lower Santa Ynez Subarea, as well as in the Santa Maria and San Antonio Subareas.

Importation of SWP water to the lower Santa Ynez Subarea would greatly improve the local water quality. It is also to the advantage of the City of Lompoc to use the best quality water available throughout its system to meet the stringent waste water discharge requirements that have been established.

Salsipuedes Reservoir. This reservoir would be located on Salsipuedes Creek, a major tributary to the Santa Ynez River. The proposed damsite is about 5 miles southeast of the City of Lompoc on Salsipuedes Creek, two miles upstream from its confluence with the Santa Ynez River. This is an option considered for the lower Santa Ynez Subarea only.

The proposed project would place a 170-foot high earth-filled dam of some 2.5 million cubic yards, depending upon the damsite, in Salsipuedes Creek to form a reservoir of 50,000 acre-feet capacity.

There is a wide variation in precipitation and runoff in the watershed from year to vear. However, after releases to satisfy downstream water rights and losses to evaporation and unrecovered spills, possibly 6,500 acre-feet per year under a ground water recharge mode of operation or 2,850 acre-fect per year under a surface delivery safe yield mode of operation would be available to augment the local water supply under average climatic conditions. However, the estimated yield in the ground water recharge mode may be too high because of limited storage capacity in the Lompoc Ground Water Basin.

<u>Desalination of Sea Water.</u> In spite of its high cost, this option is considered a potential source for part of the future water supply in the lower Santa Ynez Subarea because of the limited number of water
supply options available for this subarea. Costs developed for the desalination of sea water in the lower Santa Ynez Subarea using reverse osmosis are given in Table 35.

Of all the proposed local water supply options, exclusive of the SWP option, only sea water desalination could provide sufficient water on its own to make up the deficit between the subarca's current water supply and its demand. But it would be an energy-intensive option at a high cost.

Options Not Selected. Other options that were analyzed but not selected are listed below. Descriptions of these options and the reasons for not selecting them are summarized in Tables 32 and 33.

- Hot Springs Reservoir

TABLE 35 DESALINATION OF SEA WATER BY REVERSE OSMOSIS IN SANTA YNEZ (LOWER) SUBAREA

Plant capacity, AFY Capital cost \$	12,000 54,200,000
Annual capital cost § Annual operating cost § Total annual cost §	3,396,000 9,240,000 12,636,000
Unit water cost/AF \$	1,054
<ul> <li>Assumptions and Method of O</li> <li>Plant life expectancy, 3</li> <li>Interest rate, 9.5 perce</li> <li>Unit energy consumption, kWh/AF.</li> <li>Unit energy cost,\$0.085/ and \$0.03/kWh (State).</li> <li>Energy recovery equipmen included in capital cost</li> <li>Operating time, 85 perce tenance time, 15 percent water recovery, 30 perce</li> <li>Seawater TDS content 35</li> </ul>	computation 0 years. nt. 7550 kWh (local) t cost nt; main- ; fresh nt. 000 mg/L.
<ol> <li>Blants made up of 5 MGD modules.</li> <li>April 1984 cost base.</li> </ol>	or smaller

- Camuesa Reservoir
- Watershed management
- Weather modification
- Lompoc Reservoir
- Low Lompoc Reservoir
- Lompoc off-stream spreading

# SOUTH COAST SUBAREA

The water supply options considered in the South Coast Subarea are described in Table 36 and located in Figure 25. Because of the location of water supply options involving Santa Ynez River drainage systems (i.e., the Cachuma Reservoir enlargement and the New Gibraltar Reservoir), the water from these sources would have to be imported to the South Coast Subarea from the upper Santa Ynez Subarea.

The options selected for further study are:

<u>Cachuma Reservoir (existing) with</u> conjunctive use*

Cachuma Reservoir enlargement (27 feet) with and without conjunctive use*

Cachuma Reservoir enlargement (33 feet) with and without conjunctive use*

Cachuma Reservoir enlargement (42 feet) with and without conjunctive use*

<u>New Gibraltar Reservoir with and without</u> conjunctive use*

Goleta Water Reuse. Development of this option would involve upgrading the treatment facilities at the Goleta Sewage Treatment Plant to provide effluent suitable for landscape irrigation. However, Goleta Water District must request entitlement to SWP water in order that the project be fundable under the local projects guidelines. The project is described in this report to illustrate an available water supply that is

* See Santa Ynez Subarea for description.

	Tassa	Rabiast	A 108/					· · · · · · · · · · · · · · · · · · ·
	mental	projec	t costs		Ret	Water quality	Lezal	-
Water supply	project yield	lst cost,	Unit cost,	Engineering	energy required	and environmental	and institutions]	
option	(AFY)	(Mil,\$)	(\$/AF)	considerations	(LWh/AZ)	considerations	considerations	Renarks
1. CACHUMA RESERVOIR								· · · · · · · · · · · · · · · · · · ·
a. CACHUMA RÉSERVOIR (EXISTING) + CONJ.USE	3500	6.9	76	22 new production wells would have to be con- structed.	Hinimal Hay provide hydro- electric power	Fluctuation of seasonal water level in excess of the existing water level changes may have some effects on water quelity as well as on environment.	Any changes in opera- tion of the reservoir would require the agreement of U.S.Buresu of Reclamation (USBR), Samta Yues River Water Conservation District (SYRWCD), and Cachume Member Units.	
b. CACHIMA RESERVOIR ENLRG.(27')	7770	51.7	264	The existing dam height would be raised 27 feet. The existing spillway would have to be disman- tled and a new spillway would have to be con- structed. A new intake tower for the Tecolote Tunnel would have to be con- structed. Construction may require some lowering of the water surface, but not a major dewatering of the reservoir. Highway reinforcement needed.	Minimal May provide hydro- electric power	A portion of a county park would be inundated. Most of the land that would be inundated is owned by USBR. Water would be potable and suitable for irrigation. Unavoidable adverse effects require mitiga- tion measures. Fisheries resource may be distorbed during construction.	USER has indicated that congressional authori- zation would be needed to enlarge the reservoir. USER, SYEWCD, and Cachuma Member Units would have to agree to any enlargement before it could be sponsored and authorized.	A preliminary review by DWR indicates that the project variants a feasibility-lavel in- vestigation.
C. CACRUMA RESERVOIR ENLRG.(27') ← CONJ.USE	13520	<b>50 - 8</b>	125	29 new production wells would have to be con- structed. Modified operation of the re- servoir ground water basin would be needed.	Minimal May provide hydro- electric power	Fluctuation of seasonal reservoir water level in excess of the existing water level changes may have some effects on water quality as well as on environment.	Ady colorgement and changes in operation of the reservoir would require the agreement of USBR, SYRWCD, and Cachuma Member Units.	20% (60.8/51.7x100) in- crease in first cost of project, due to con- junctive use, would re- sult in 74% (13520/ 7770x100) increase in production.

TABLE 36 SUMMARY OF SOUTH COAST SUBAREA WATER SUPPLY OPTIONS

.-

92

•

-

TABLE 36 (Continued) SUMMARY OF SOUTH COAST SUBAREA WATER SUPPLY OPTIONS

Water supply option	Incre- mental project yield (AFY)	Estimat projec lut cost, (Mil.\$)	ed 1984 E costs Unit cost, (\$/Ar)	Engineering considerations	Net ensray required (kWb/AF)	Water quality and enviroumental considerations	Legal end institutional considerations	Remarks
d. Cachuma Reservoir Bulrg.(33')	9270	61.1	300	The existing dam beight would be taised 33 feet. The existing spillway would have to be disman- tled and a new spillway would have to be con- structed. A new intake tower for the Tecolote Tunnel would have to be constructed. About 0.5 mile of High- way 154 would have to be raised. The outlet facilities would have to be extended 400 feet. Construction may require some lowering of the water surface, but not a major dewatering of the reservoir.	Minimal May provide hydro- electric power	A portion of a county park would be inundated. Mitigation measures would be required. Most of the land that would be inundated is owned by USER. Water would be potable and suitable for irrigation. Unavoidable adverse effects require mitiga- tion measures. Fisheries resource may be disturbed during construction.	USBE has indicated that congressional authori- mation would be useded to enlarge the reservoir. USBE, SYNWCD, and Cachuma Member Units would have to agree to any enlargement before it could be sponsored and authorized.	A preliminary review by DMR indicates that the project warrants a feasibility-level investigation.
e. CACHUMA RESERVOIR ENLRG.(33') + CONJ.USE	15010	71.0	140	30 new production wells need to be constructed. Operation of reservoir and ground water basins would have to be modified.	Minimal May provide hydro- electric power	Fluctuation of seasonal reservoir water level in excess of the exist- ing water level chauges may have some affects on water quality and environment.	Any enlargement and changes in operation of the reservoir would have to be approved by USBR, SYRWCD, and Cachuma Member Units.	162 (71.0/61.im100) increase in first cost of project, due to con- junctive use, would in- crease the production by 621 (15010/9270m100)

f. CACEUMA RESERVOIR ENLEG.(42 [*] )	10590	60.0	361	The existing dam height would be raised 42 feet. The existing spillway would have to be disman- thed and a new spillway would have to be con- structed. A new intake tower for the Tecolote Tunnel would have to be constructed. About 1.2 miles of High- way 154 would have to be relocated. The outlet facilities would have to be extended 400 feet. Construction may require some lowering of the water surface, but not a major dewatering of the reservoir.	Minimal Hay provide hydro- electric power	A portion of a county park would be inundated. Most of the land that would be inundated is owned by USBR. Mater would be potable and suitable for irrigation. Unavoidable adverse effects require mitiga- tion measures. Fisheries resource may be disturbed during construction.	USBE has indicated that congressional authori- mation would be needed to enlarge the reservoir. USBE, SYEWCD, and Cachuma Member Units would have to agree to any enlargement before it could be sponsored and authorized.	A preliminary review by DWR indicates that the project warrants a feasibility-level investigation.
g. CACEUMA RESERVOIR ENLEG.(42') + CONJ.USE	17490	90.0	171	32 new production wells need to be constructed. Operation of reservoir and ground water basine would have to be modified.	Hinimal Hay provide hydro- electric power	Pluctuation of seasonal reservoir water level in excess of the exist- ing water level changes may have some effects on water quality and environment.	Any enlargement and changes in operation of the reservoir would have to be upproved by USBR, SYRWCD, and Cachuma Nember Units.	13% (90/80m100)increase in first cost of pro- ject, due to conjunc- tive use, would in- crease the production by 65% (17490/ 10590m100).

. .

- -

*4* 

TABLE 35 (Continued) SUMMARY OF SOUTH COAST SUBAREA WATER SUPPLY OFTIONS

	Incre-	Estimat	ed 1984		~		······································		
Vater supply option	mental project yield (AFT)	projec lat cost, (Mil.\$)	t conts Unit cont, (\$/AT)	Engineering comiderations	Wet energy required (kWh/AF)	Water quality and environmentel considerations	Legal and institutional considerations	Imarks	
<ol> <li>Hot Springs Reservoir</li> <li>3. NEW GIMALTAR RESERVOIR</li> </ol>	. 5920	73.6	936	Highway 154 and Paradise Road would have some relocation.	Ninimel May provide hydro- electric powar	Portion of Paradise area would be inundated. Most of the reservoir area is privately owned. Impairment of present water supply facilities not fully enalysed. Would offer additional recreational opportuni- ties; waterfowl could use reservoir resting area slong the Pacific Coast migration route. Unavoidable adverse effects require mitige- tion measures. Fisheries resource may be disturbed during construction.	Weed to establish yield obligation by prior rights. All established water rights must be satisfied. Must appropriate water through State Water Re- sources Control Board (SWRCB). Hust enter into agree- ments with a number of agencies. Water rights have not base fully analyzed.	A preliminary review by DMR indicates that a feasibility-level in- vestigation should be deferred until after a study is done regarding the enlargement of Gachume Reservoir or constructing new Gibraltar Reservoir.	
A. NEW GIBRALTAR RESERVOIR	8335	98.8	<b>869</b>	Existing inlet-outlet system not useble at new site. Engineeringly feasible.	Minimal Hay provide hydro- electric power	Appears environmentally sound. No homes, roads, or utilities threatened. Increased recreational opportunities. Unavoidable adverse effects require mitiga- tion measures. Fisheries resource may be disturbed during construction. The habitet of the least Bell's virso may be impacted.	Need to establish yield obligations by prior right. All established water rights must be satis- fied. Nust appropriate water through SWECB. Nust enter into agree- ments with a number of agencies.	Proliminary review by DML indicates that the project warrants a feasibility-lovel in- vestigation.	

b. NEW GIBRALTAR RESERVOIR + CONJ.USE (Including Lompoc Pipeline)	13120	104.4	925	18 new production wells would have to be con- stracted. Modifications of the reservoir and ground water basin operation would be needed.	Minimal May - provide hydro- electric power	Fluctuation of seasonal water level in excess of the existing water level changes may have nome effects on water quality as well as environment. See additional comments under (a) above.	Need to establish yield obligations by prior right. All established water rights must be satis- fied. Must appropriate water through SWRCH. Must enter into agree- ment with a number of agencies.	6% (104.0/98.3x100) in- crease in first cost, due to conjunctive use, would increase the pro- duction by 57% (13120/ 8335x100).
4. Comuesa Reservoir Plus Lompoc Pipeline	<b>8</b> 000	97.5	90 <del>9</del> 498	The Santa Ynez fault passes about 1.5 miles south of dam site. Nock in the left abut- ment has high permeabi- lity. New access roads would have to be constructed. (The Lompoc Pipeline could be included as part of this project.)	Minimal Nay provide byöro- electric power	Water would be potable and suitable for irrigation. Most of the reservoir area is public pro- perty. The reservoir would be vulnerable to silta- tion; however, a pro- vision for siltation can be designed into the reservoir. Unavoidable adverse effects require mitiga- tion measures. Fisheries resource may be disturbed during construction.	Water rights have not been fully studied. Must enter into agree- ments with a number of agencies.	A preliminary review by DWR indicates that a fessibility-level in- vestigation should be deferred until after a study is done regarding the enlargement of the Cachume Reservoir or building new Gibraltar Reservoir.
5, Watershed Management			ż	Management areas must be upstream from reservoir or ground water recharge facilities in order to regulate the additional rumoff.	Unknown	Whether the sediment yield effects are bene- fial or detrimental will depend on the care exercised in the management program.	A Coordinated Resource Management Agreement will be required to secure the cooperation of other state and federal resource and land management agencies.	Vegetation management can be initiated and benefits realized with- in 2 or 3 years after need for additional streamflow is secertained.

90

TABLE 36 (Continued) SUMMARY OF SOUTH COAST SUBAREA WATER SUPPLY OFTIONS

		1		· · · · · · · · · · · · · · · · · · ·	1			
	Incre-	<b>Batima</b>	ed 1984					
1	mental	proje	C costs		Net	Water quality	Lagal	1
	project	lat	Unit		acargy	and	and.	-
Water supply	yield	cost,	cost,	Englandring	required	environmental	institutional	
option	(AFY)	(Mil.\$)	(1/47)	considerations	$(\mathbf{W}_{\mathbf{h}})$	considerations	considerations	Resarks
6. Weather Nodification	2000 to 4000**	*	*	Determination of aug- mented water supply in surface reservoirs would require detailed opera-	Ninimel	The effects of in- creased sessonal rain- fall on fish and wild- life are impossible to	Cloud seeding in one area could modify pre- cipitation in another area.	This project is on- going; new SWP yield would result only from additional gloud
			-	tional studies,		determine.		sesding.
		-		Cloud seeding appears to be most effective when conducted from sircraft.				
				Cloud seading is most productive during met years and least produc- tive in dry years.				
7. Sagle Canyon Resevoir	2000	42.8	2201	Existing conduit must be modified and a turn- out facility would be required. An additional pumping station is needed. Appears engineeringly fessible.		It is anticipated that no rare or endengered wild-life species would be affected. Loss of 320+ acres of deer range/agriculturel lands would have to be mitigated. Water is of good quality; however, requires treatment for NET use.	Any attempt by Golata Water District (GMD)to divert spill water for storage at the site may be challenged by the SYRNGD.	A preliminary review by DWR indicates that the proposed project is not competitive economi- celly with alternative sources of supply available to the SWP.
8. GOLETA WATER BRUSE			-	Treatment facilities, pumping stations, pipe- lines and Facle Common		Precautions must be taken to ensure high quality realized peter	GAD has suthority to construct, operate, and maintain the	A feesibility-level in- vestigation conducted by NE concluded that
PRASE I	845	12.8	1737	Reservoir (not same re- mervoir as mentioned above) can be constructed	2000	and minimum health risks. Mater reclaimed would maintain green-	facilities.	Phase I of the project is eligible for inclu- sion in the SWP. Phase
Phase II.	2,800			ar proposed sizes and to desired standard by sccepted techniques. Pro- ject appears sugineering- ly feasible.		Series. Sffects of salt build- up in the root some and on ground water quality should be monitored. Reuse of local waste water supplies would help conserve the fresh water supplies. Typical analysis of treated waste water in mg/L: TDS, 1,330; Ma, 276; HOD3, 403; C1, 328; and SO4, 315.	Smach, Chilf, Dept. of Health Services, and Santa Barbara County Dept.of Health. Censtruction approval needed from Calif. Geastal Commission. Negotiation will be required between GWD, DWR, and SECFEWED.	In of the project could be included if Goleta Water District could show that there is an ensured market for the reclaimed water. Phase II dropped from further consideration for this reason.

9. Golgta flood control and recharge (Corps of Engineers)	500	1.5***		The project consists of multi-purpose earthen dams on San Pedro, Las Vegas, and San Jone Creaks; releases would be coutrolled to perro- late 500 acre-feet per year. The heights of the dams would range from 67 feet to 85 feet; width would be approximately 700 feet. Ground water pumping lifts would be decreased to a small degree.	Energy will be required to entract ground water	May displace some homes Would provide flood control and additional water conservation through artificial re- charge of runoff that would be lost to the ocean. Some vegetation and or- chards would be lost; however, downstream vege- tation and wild life may benefit from con- tinuous flow of water in creeks.	Agreements would be necessary between GWD, SBCFCWCD, DWR, and U.S. Army Corps of Engineers. Management of ground water replenishmant and extraction required.	
10. SANTA BARBARA CITY DEGIONAL WATER RUSE PHASE I (LANDSCAPE IRRIGATION) Phase II (Ground Water Recharge)	648 to 1052# 1000	LI.4	1177- to 1151	Pretreatment facilities would be located at the eristing Sente Barbara Wastswater Treatment Plant. The distribution system would require over 20 miles of gipelines. Two system storage faci- lities must be con- structed.	Eigh	Reclaimed water would be used for landscape irrigation. Precautions must be taken to minimize public contact with the reclaimed water. TDS of the reclaimed mater would be about 1 300 mg/L.	Agreements would be required between the various local agencies, SBGPCWCD, and DWR,	A preliminary review by DMR indicates that the project warrants a feasibility-level in- vestigation. Only 1.052 arre-feat of potable water would be available for higher use

-

~

Water supply option	Incre- mental project yield (AFY)	Sotinate projec lut cost, (Mil.\$)	ed 1984 t costs Unit cost, (\$/AF)	Engineering considerations	Net energy required (kWh/AF)	Water quality and anvironmental considerations	Legsl and institutional considerations	Romarks
11. DESALIWATION SEA RAIER	841 to 12435	3,3 to 56.1	1211 to 1091	Treatment facilities, pumping stations, and pipelines can be con- structed at the proposed site to desirable stan- dards by accepted techniques.	7550	Desaited mater would be used for M&I purposes. Minimum adverse environ- mental impact would occur during the con- struction of the de- salting plant and the transportation facili- ize. The use of local de- salted water would help conserve the fresh supplies of the area. Lealiable salt weter supply.	Agreements would be re- quired emong the vari- oum local agencies and DMR. Construction of the de- selting plant mear the coast must be approved by the Calif.Coastal Commission and the Calif.Regional Water Quality Control Board, Central Coast Region.	Desalination plant size depends upon the yield provided by options selected for the reservoirs in the upper Sents Thes Subarge. Very energy intensive.
12. STATE WATER PROJECT	12435	¥/A	880	Importation of SWF water to the South Coast would require the completion of the Coastal Branch, 3 pumping plants, 3 re- gulatory storage tenks, 1 power recovery plant & 42- to 66-inch pipeline, and construction of the Intra-County Distribution System (ICDS), two pumping plants, three regulatory storage tenks, plus 30- to 39-inch pipeline.	3130	Quality of SWF water would be good. Average 1984 constituents (mg/L at Check 5- Goestal Branch) are shown in Table 16.	Contract between State and SECFCWCD is in place for ease of implementation. Con- tracts between SECFCWCD and agencies that are to receive SWP weter may be needed. Wo major legal or institutional problem is anticipated.	

TABLE 36 (Continued) SUMMARY OF SOUTH COAST SUBARIA WATER SUFFLY OFTIONS

.

* Not determined.

** Water yield cannot be estimated within reasonable accuracy.

*** Does not include new recharge facilities; recharge is assumed to occur in the creek channel.

# The use of 1555 acre-feet of reclaimed water would free 1052 scre-feet of emisting potable water for higher use.

Note: Options in CAPITAL LETTERS are included in selection of alternatives.

90



Copy of document found at www.NoNewWipTax.com

currently not developed.

The project is divided into two phases. Under phase I, secondary treatment facilities would be added to the current facilities to provide effluent of a quality adequate for irrigating landscapes and golf courses. Under phase II, additional secondary treatment facilities plus desalting capabilities would be added to further upgrade effluent quality to irrigate avocado and citrus groves. Water from the desalting facilities would be blended with effluent from the secondary treatment plant to produce water approximately equivalent in mineral quality to that of local water supplies. The water would not be potable, however, and would have only limited use. Both phases would include separate pumping stations and pipelines to distribute the reclaimed water.

Under phase L 965 acre-feet of reclaimed would be available annually to water replace the 845 acre-feet of potable water currently used for irrigation that could, in effect, be added to the Goleta water Adding phase II, up to 8,600 supply. acre-feet of reclaimed water could be made landscape annually for and available agricultural irrigation. About 2,800 acre-feet per year of potable water now used for this purpose would be freed for urban use. Preliminary studies indicate that this project, through phase II, is technically feasible. economically and assuming that future agriculture will provide a market for the total reclaimed water that would be produced.

Santa Barbara City Regional Water Reuse. This option would provide 1,560 acre-feet of reclaimed water for landscape irrigation plus 1,000 acre-feet per year for recharge, subject to institutional constraints in Santa Barbara and nearby communities. The use of the reclaimed water would replace 1,050 acre-feet of potable water currently used for landscape irrigation, which could, in effect, be added to the City's and districts' water supply. The concept report on the reuse program by the City of Santa Barbara and adjacent south County communities estimated that the reclaimed water would cost approximately \$1,151 per acre-foot. The same report indicates that the project is economically and technically feasible. The proposed project would add pretreatment facilities consisting of filters, supply pumps, controls, alum and polymers feed system, chlorination, and boosters to pump effluent to the reservoirs or directly for landscape irrigation.

Desalination of Sea Water. Sea water is readily available and the time required to build the facilities and deliver a water supply is relatively short compared to other options. Desalination is energy intensive and, therefore, future costs are less certain than for reservoir projects. Desalination could be provided in whatever quantities

TABLE 37 DESALINATION OF SEAWATER BY REVERSE OSMOSIS IN SOUTH COAST SUBAREA

Plant capacity, AFY	12,435
Capital cost	\$ 56,100,000
Annual capital cost	\$ 3,606,000
Annual operating cost	\$ 8,108,000
Annual local	<u>\$ 1,853,000</u>
transportation cost	<u>\$ 13 567 000</u>
Unit water cost/AF	\$. 1,091

Assumptions and Method of Computation

- 1. Plant life expectancy, 30 years.
- 2. Interest rate, 9.5 percent.
- Unit energy consumption, 7,550 kWh/AF.
- 4. Unit energy cost, \$0.085/kWh (local) and \$0.03/kWh (State).
- 5. Energy recovery equipment cost included in capital cost.
- Operating time, 85 percent; maintenance time, 15 percent; fresh water recovery, 30 percent.
- 7. Sea water TDS content, 35 000 mg/L.
- 8. Plants made up of 5 MGD or smaller modules.
- 9. April 1984 cost base.

might be desired and facilities could be constructed in stages more readily than other types of projects.

**Table 37** contains a summary of costs to develop a water supply from desalination of sea water in the South Coast Subarea.

State Water Project. SWP water delivery to the South Coast would require completion of the Coastal Branch and the construction of the Santa Maria-Tecolote Tunnel aqueduct. The aqueduct would consist of a pressure pipeline that would parallel Telephone Road, U.S. Highway 101, and State Highway 154 to the north portal of Tecolote Tunnel. The system would contain two pumping plants, one southeast of Santa Maria and one north of the intersection of Highways 101 and 154, and three storage sites. The final configuration and cost would depend on the actual level of participation within the South Coast as well as the other subareas in the County. Construction of the Coastal Branch would be a State responsibility and construction of the pipeline (part of ICDS) would be a local responsibility.

SWP water would require treatment. The

blending of Cachuma water with SWP water would improve the overall quality of water being served to the South Coast. The TDS content of Cachuma Reservoir water varies but usually averages about 590 mg/L, whereas SWP water averaged about 185 mg/L in 1984 near Devil's Den on the Coastal Branch. Use of SWP water for agricultural purposes appears to be beyond the payment capacity of crops currently raised and is not considered in this study.

<u>Options Not Selected.</u> Other options which were analyzed but not selected are listed below. Descriptions of these options and the reasons for not selecting them are summarized in Table 36.

- Hot Springs Reservoir
- Camuesa Reservoir
- Watershed management
- Weather modification
- Eagle Canyon Reservoir
- Goleta flood control and recharge

#### CHAPTER VI. FORMULATION OF ALTERNATIVES

During the screening process, a number of water supply options appearing to have the potential for supplying an equivalent of the subarea's SWP water entitlement were identified within each subarea. Table 38 depicts, for comparison, the water yield, both capital and annual operation and maintenance (O & M) costs ranked by unit costs and energy required of these selected options, together with yield, costs, and energy required of other options not selected. Table 39 depicts the same information, but ranked by yield. Selected options were found to meet the entire entitlement within each subarea except Cuyama and San Antonio Subareas. The water supply developed by some options was also assumed to be shared between subareas. such as those located on the Santa Ynez River system (Cachuma Reservoir enlargements, New Gibraltar Reservoir, etc.).

Since costs to develop future SWP supplies (conservation facilities) are not known, Tables 38 and 39 depict a range of \$400 to \$200 per acre-foot of financing for future SWP supplies and its effect on local project financing. For this study, \$400 per acre-foot of financing was assumed.

Tables 38 and 39 costs for local project alternatives were developed by SBCFCWCD and DWR. Considerable effort was expended in developing the best cost data based on past studies and some new evaluations, such as those done by DWR (local projects on the upper Santa Ynez River system, desalination of sea water, and water reuse project at Goleta) and SBCFCWCD (Branch Canyon, Santa Barbara Canyon, and San Antonio Reservoirs). Previous cost estimates were updated to April 1984 costs using the U.S. Bureau of Reclamation Construction Cost Index.

Costs shown in Tables 38 and 39 for SWP

water via the Coastal Branch are the sum of SBCFCWCD's share of related SWP facilities charges as shown in Table 40 (\$72 per acre-foot); estimated costs for completion of the Coastal Branch of the SWP, including pumping costs (\$301 per acre-foot); and estimated costs for local distribution facilities for each subarea, plus pumping costs. Costs for SWP water via the Cuyama Branch are the sum of SBCFCWCD's assumed share of related SWP facilities charges as shown in Table 40 (\$49 per acre-foot); estimated costs for completion of the Cuyama Branch between Maricopa and the Santa Barbara County line, including pumping costs (\$1,020 per acre-foot); and estimated costs for local distribution facilities between the county line and New Cuyama (\$50 per acre-foot). included in the above costs Not аге estimated costs for future SWP vieldproducing facilities, which would increase costs for these alternatives. These estimates are discussed in Chapter VII.

Costs that were not included in the cost analysis for Santa Maria and Lompoc areas, but that should be considered in any final feasibility study, are treatment costs and consumer penalty costs (such as those from shortened lives of water heaters and plumbing fixtures and from increased use of soap, water softeners, and bottled water) resulting from use of poorer quality local water and economic benefits derived from use of better quality SWP water. Table 41 compares estimated treatment (chemicals, electric power, natural gas, etc.) and consumer penalty costs. Capital costs for treatment plants are not included because each water source will require a treatment plant and this table is just for comparing costs. The consumer penalty costs shown are for water after receiving proposed municipal treatment. The penalty costs for ground water given only the existing treatment range from \$60 per acre-foot in Lompoc to

# TABLE 38: ESTIMATED COSTS OF SANTA BARBARA COUNTY WATER SUPPLY OPTIONS RANKED BY UNIT COSTS WITHIN SUBAREAS *

Assumed SWP avoided cost share of local project costs>\$400/AF \$200/AF Unit												
SUBAREA	Í	Capital	Annual	Energy	Rait	. Dnit	local					
1	Yield	cost	08M **	use	cost	cost	funds					
Nater supply option	AFY	\$1000	\$1000	kNh/AF	\$/AF	\$/AF	\$/AF					
CUYAMA												
SNP Water	1,600	-		4,030	1,119	1,119	1,119					
Santa Barbara Cyn Reservoir	1,500	36, 000	108	0	2,517	2,756	3,083					
Branch Canyon Reservoir	400	12,000	36	0	3,210	3,449	3,776					
SANTA MARIA												
SNP Hater	16,850	-		1,985	430	430	430					
Round Corral Reservoir	ь, 700	83, 300	250	0	902	1,141	1,467					
Desalination of Seawater	16,850	74,400	6,790	7, 550	1,143	1,355	1,806					
SAN ANTONIO SHP Water	23			2,100	598	598	598					
LOHER SANTA YNEZ												
SHP Nater	12,000	-	I	2, 220	693	693	693					
Salsipuedes Reservoir	2,850	33, 500	101	0	922	1,161	1,487					
Lompoc Reservoir	16,600	216, 200	649	0	1,022	1,260	1,587					
Desalination of Seawater	12,000	54,200	4,870	7,550	1,054	1,265	1,674					
Low Lompoc Reservoir	3,190	64,400	193	0	1,867	2,106	2,433					
Cachuma-Lompoc Pipeline ***	4,000	16, 217					498					
UPPER SANTA YNEZ SHP Water	2, 578	-		3,130	830	830	830					
UPPER SANTA YNEZ + SOUTH COAST												
Existing Cachuma + Conj Use	3,500	6,900	32	460	76	101	310					
27' Enlrgd Cachuma + Conj Use	13,520	60, 785	225	260	126	268	591					
33' Enlrgd Cachuma + Conj Use	15,013	71,000	260	250	142	284	618					
42' Enlrgd Cachuma + Conj Use	17, 490	90,000	324	240	171	332	666					
Enlrgd Cachuma (27 ft)	7,770	51,685	155	0	264	493	820					
Enlrgd Cachuma (42 ft)	10, 590	80,000	240	O	361	600	927					
New Gibraltar Resv + Conj Use	13,120	104,400	354	220	427	661	996					
New Gibraltar Reservoir	8,335	98,800 07 EOU	290	0	609	1,107	1,434					
Hot Springs Reservoir	a, 000 5, 920	73,557	295	0	936	1,175	1, 502					
SWB Water	19. 896	-		3, 120	<b>R</b> RU	880	880					
Decalination of Segurator	12,400	56 100	5 000	2,550	1 001	1.303	1.712					
SR Regional Nator Reuse	1.052	11, 277	197	1,500	1, 151	1,370	1.759					
Goleta Rater Repee	,,сус Анк	12,775	202	2,000	1,737	1,956	2, 373					
Eagle Canyon Reservoir	2,000	42, 768	128	1,000	2, 201	2,433	2,809					
<ul> <li>* Nith and without SWP fundi Water quality consideratio</li> <li>** Annual operation and maint</li> <li>*** The Lompoc Pipeline may be reservoirs</li> </ul>	ng of lo ng not i enance o install re for l	ecal proj ncluded. costs, nc ed with	ects. A ot inclu any of	iding power the upper	price er costs r Santa e alone	levels. Ynez Rive and musi	; ; ;					

Copy of document found at www.NoNewWipTax.com

be added to the cost of reservoir projects.

# TABLE 39: ESTIMATED COSTS OF SANTA BARBARA COUNTY RATER SUPPLY OPTIONS RANKED BY YIELD WITHIN SUBAREAS *

Г

Assumed SWP avoided cost share of local project costs>\$400/af \$200/af Unit											
SUBAREA		Capital	<b>A</b> ตกบล1	Energy	l Denite	Unit	cost				
]	Yield	cost	08M **	USE	Post	onst	fundo				
Nater supply option	AFY	\$1000	\$1000	kWh/AF	S/AF	SUSC STAR	10009				
· · · · · · · · · · · · · · · · · · ·					<b>•</b> •••••	77 11					
CUYAMA							ļ				
SHP Nater	1,600	-		4,030	1,119	1,119	1,119				
Santa Barbara Cyn Reservoir	1,500	36,000	108	0	2,517	2,756	3,083				
Branch Canyon Reservoir	400	12,000	36	0	3, 210	3,449	3,776				
SANTA MARIA							}				
SXP Water	16.850	-		1.985	120	1120					
Desalination of Seawater	16,850	74,400	6. 790	7,550	4 90	430	1 006				
Round Corral Reservoir	6.700	83.300	250	,,,,,0	Q02	1 1 1 1	1,000				
					706	1, 141	1,401				
SAN ANTONIO: SXP Hater	23	-		2,100	598	598	598				
LOHER SANTA YNEZ											
Lompoc Reservoir	16,600	216, 200	649	o	1,022	1,260	1,587				
SMP Nater	12,000	· _		2,220	693	693	693				
Desalination of Seawater	12,000	54,200	4,870	7,550	1,054	1,265	1,674				
Low Lompoc Reservoir	3, 190	64,400	193	0	1,867	2,106	2,433				
Salsipuedes Reservoir 🕴	2,850	33, 500	101	0	922	1,161	1,487				
Cachuma-Lompoc Pipeline ***	4,000	16,217					498				
UPPER SANTA YNEZ: SMP Rater	2, 578	••••••••••••••••••••••••••••••••••••••		3,130	830	830	830				
UPPER SANTA YNEZ + SOUTH COAS'	T					·					
42' Enlrgd Cachuma + Conj Use	17,490	90,000	324	240	171	332	666				
33' Enlrgd Cachuma + Conj Øse	15,013	71,000	260	250	142	284	618				
27' Enlrgd Cachuma + Conj Use	13, 520	60, 785	225	260	126	268	591				
New Gibraltar Resv + Conj Use	13,120	104,400	354	220	427	661	996				
Enlrgd Cachuma (42 ft)	10, 590	80,000	240	0	361	600	927				
New Gibraltar Reservoir	8,335	98,800	296	0	869	1,107	1,434				
Camuesa Reservoir	8,000	97,524	293	O j	909	1,147	1,474				
Enlrgd Cachuma (27 ft)	7,770	51,685	155	0	264	493	820				
Hot Springs Reservoir	5,920	73,557	221	0	936	1,175	1,502				
Existing Cachuma + Conj Use	3,500	6,900	32	460	76	101	310				
SOUTH COAST ONLY											
SNP Hater	12, 435	-		3,130	880	880	880				
Desalination of Seawater	12, 435	56,100	5,000	7,550	1,091	1,303	1,712				
Eagle Canyon Reservoir	2,000	42,768	128	1,000	2, 201	2,433	2,809				
SB Regional Nater Reuse	1,052	11,377	197	1,500	1, 151	1,370	1,759				
Goleta Water Reuse	845	12,775	223	2,000	1,737	1,956	2,373				
<ul> <li>* Sith and without SHP fundi Nater quality consideration</li> <li>** Annual operation and maint</li> <li>*** The Lompoc Pipeline may be</li> </ul>	ng of lo ohs not i cenance c cinstall	cal proj ncluded. osts, no ed with a	ects. A t includ any of t	April 198 Jing роке the upper	4 price r costs, Santa Y	levels. Nez Rive	r				

.

be added to the cost of reservoir projects.

#### TABLE 40 ASSUMPTIONS FOR SWP CHARGES

In dollars per acre-foot

12.87 7.13* 20.00	\$ 12.87 7.13*		
20.00			
	\$ 20.00		
51.94**	\$ 29.00**		
71.94	\$ 49.00		
-	51.94** 71.94 tial portion of		

\$285 per acre-foot in Santa Maria, where it receives chlorination only.

Mineral quality (salinity, sodium, boron, etc.) also exerts an impact upon agricultural water users. These penalty costs were not assessed in this study, but should be recognized in any final decision.

To meet the water supply requirements within Santa Barbara County as a whole, a number of options were combined. Matrices were developed and programmed to depict various combinations of options for each subarea within Santa Barbara County. Each combination was, in turn, referred to as an alternative and, subsequently, 16 were developed for evaluation. Table 42 displays the alternatives that were selected. Alternatives are numbered for identifiorder of preference. cation, not in Descriptions of the alternatives are given below: 🗉

(Note that these alternatives, with minor exceptions, produced a quantity of water equal to the County entitlement to SWP water.)

#### Alternative 1

All local projects (including raising Cachuma 27 feet).

- o All entitlement water within each subarea is developed exclusively by local projects.
- Heavy reliance is placed on a variety of local projects such as: surface reservoirs
  Santa Barbara Canyon, Round Corral, Salsipuedes, and Cachuma (27-foot enlargement); desalination of sea water in the Santa Maria, lower Santa Ynez, and South Coast Subareas; and water reuse at Goleta and Santa Barbara.

o Note that Santa Barbara Canyon Reservoir

would develop only 1,500 AFY of Cuyama Subarea's 1,600 AFY entitlement. This also applies to Alternatives 2, 4, and 7.

o Cachuma Reservoir yield is shared between the Santa Ynez (both upper and lower) and South Coast Subareas. However, the San Antonio Subarea (Casmalia) would receive no water.

#### Alternative 2

All local projects (including raising Cachuma

#### 42 feet).

o Alternative 2 is identical to Alternative 1, except Bradbury Dam on Cachuma Reservoir is raised by 42 feet.

#### Alternative 3

Local projects for the South Coast and upper Santa Ynez Subareas (including New Gibraltar); SWP water to rest of County.

o SWP water is delivered via the Cuyama

			Qui	ality		Municipal costs * i	trestment n S/AF		Total vator	
	Source Product			Consumer	quality					
Water supply option		TDS mg/L	TH mg/l.	TDS mg/L	TH mg/L	Existing	Proposed	costs,** in \$/AF	cost, in \$/AF	
SWP Water (Check	5).	185	75	185	75	1	12	0	12	
LOMPOC AREA :										
Salsipuedes Reservoir		850	520	595***	150 <b>#</b>		100	60	160	
Cachume Reservoir Enlargement		590	385	430***	150#	-	75	60	135	
Ground water##	1	400	850	850	150	160	160	60	220	
Sea Water	35	000	6000	500	86###	<u></u>		10	10*	
SANTA MARIA AREA:				•	•••					
Round Corral Reservoir		720	480	490 <del>**</del> *	150#	_	90	60	150	
Ground water##		770	445	565***	150#	no trestment	85	60	145	
Sea water	35	000	6 000	500	86 <b>++ +</b>			0	0 <del>*</del>	
<ul> <li>Treatment cost: and ground wat: sea water by re- of energy glone</li> <li>Penglty costs, on consumers;</li> <li>TDS reduced in # Assumption: T: Lompoc Treatmen</li> </ul>	s ba even e fo afo coso pro real nt )	ased c extractive of or des ter pr t adju oporti tment Plant.	m existing tion costs mosis beca clination oposed mum isted to 19 on to redu will resul	costs at Also ex- use they s is approxi icipal tre 84 dollars ction in T t in produ	Lompoc Trea cludes capi re already mately \$642 atment, dev DS and TH a ct water with	tment Plant. tal and oper included in per acre-fo eloped from t Lompoc Tre th quality s	Excludes tr ation and mai cost figures ot. generalized o atment Plant. imilar to the	estment plant intenside cost shown in this curve for cost it of water su	capital costs s for desalting report. Cost impact of TH pply from	

TABLE 41 SUMMARY OF WATER QUALITY PENALTY COSTS (TDS and TH coly)

### Assumption: TH reduced in direct proportion to reduction in TDS in product water.

#### TABLE 42 SUMMARY OF WATER SUPPLY ALTERNATIVES TO WEET SECFCHED ENTITLEMENTS FROM THE STATE WATER PROJECT

SUBAREA (SNP Entitlement)		A 1	t e	ר ח	a t	i v	e s	('	C' 1	ncl	uđes	con;	junet	ive.	use)	
Nater supply option	1	2	3	4 	5	<u> </u>	<b>?</b>	8		1.		12	2 13	14	15	16
CUYAMA (1,600 AFY)																
Santa Barbara Canyon Resv	X	I		X			X								1	
State Water Project		<u> </u>	, I		r	X		X	x	x	X	x	<b>- x</b>	x	T.	r
SANTA MARIA (16,850 AFY)																
Round Corral Reservoir	X	X														
Desalination of Seawater	X	I			<b>X</b>	x										
State Water Project			X	I			x	x	x	I	I	x	x	X	x	x
EREREZZENIEZZENIEZZENIEZZENIEZZENIEZ <del>, kontronuterezeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezzeniezeniezeniezeniezenie Ran antonio (23 afy)</del>																
State Nater Project			X.	X				x	X	x	I	I	I	I	X	I
SANTA YNEZ, LOWER (12,200 AF	יץ)	"														
Gibraltar + Lompoc Pipeline		:						·		C						
Cachuma + Lompoc Pipeline	127	142		V			in di La di	C27	C42				042			C42
Salsipuedes Reservoir	I	X					<b>X</b>									
Desalination of Seawater	x	x			X	x	Y									
State Water Project			I	<b>x</b>		 		X	X	<b>X</b>	I	x	x	T	x	I
SANTA YNEZ, OPPER (2,578 AFY	)															
New Gibraltar Reservoir			x	X						¢			:	c		
Existing Cachuma, Conj. Use							с									
Enlarged Cachuma Reservoir	X27	X42		<u>د</u>	127	142		027	C42		C27	<b>c</b> 33	C42			C42
State Water Project	[]	- <u></u> -					LI		<b>_</b>						x .	
SOUTH COAST (12,435 AFY)					·						<b>.</b>					
New Gibraltar Reservoir			I	I						C				C		
Existing Cachuma, Conj. Use							C									
Enlarged Cachuma Reservoir	X27	X42	1.0		127	X42		C27	C42		C27	¢33	C42			C42
Goleta Hater Reuse	I	x	<b>x</b>				x	x	x		X					
SB Regional Nater Reuse	X	x	X				x	I	I	I	I			x	· · ·	
Desalination of Seawater	x	I	x	X	X	x	x	x	r	ĩ			- 	X		I
State Water Project	toov of	docu	ment	eruerel-r		-NoN	مسكلانين	Texec	***						<b>. X</b> ¹	

Branch to the Cuyama Subarea and via a downsized Coastal Branch and ICDS to the Santa Maria, San Antonio (Casmalia), and Santa Ynez (lower) Subareas.

o Local projects such as New Gibraltar, which is shared by the Santa Ynez (upper) and South Coast Subareas, water reuse, and desalination of sea water, which is developed exclusively for the South Coast, make up the remaining water supply.

#### Alternative 4

SWP water to the Santa Maria, San Antonio, and lower Santa Ynez Subareas; local projects for other areas (including New Gibraltar).

- o The Cuyama Subarea relies on water delivery of part of its entitlement by development of Santa Barbara Canyon Reservoir.
- o SWP water is delivered via a downsized Coastel Branch and ICDS to the Santa Maria, San Antonio (Casmalia), and Santa Ynez (lower) Subareas.
- o Water is provided to the rest of the County by local projects, such as New Gibraltar, which serves the Santa Ynez (upper) and South Coast Subareas, and desalination of sea water, which serves the South Coast.

### Alternative 5

SWP water to Cuyama; local projects for all other subareas (including 27-foot Cachuma Reservoir and desalination of sea water).

- o The entitlement for the Cuyama Subarea is met by delivery of SWP water via the Cuyama Branch.
- All other subareas will rely on local projects.
- o The Santa Maria Subarea relies solely on development of sea water desalination; San Antonio (Casmalia) receives no water

in this alternative because it is not economically feasible; the upper Santa Ynez and South Coast Subareas rely on enlargement of Cachuma Reservoir (27 feet), and the South Coast and lower Santa Ynez Subareas rely on desalination of sea water.

 Note that this alternative relies heavily on desalination of sea water and is an energy-intensive alternative.

#### Alternative 6

SWP water to Cuyama; local projects for all other subareas (including 42-foot Cachuma Reservoir and desalination of sea water).

o Alternative 6 is identical to Alternative 5, except the enlargement of Cachuma Reservoir is greater (42 feet), which reduces the overall requirement for sea water desalination in the South Coast Subarea.

#### Alternative 7

SWP water to Santa Maria Valley; rest local projects (including desalination of sea water, water reuse, and conjunctive use with existing Cachuma Reservoir).

- o The Cuyama Subarea relies on delivery of part of its entitlement by development of Santa Barbara Canyon Reservoir.
- o SWP water is delivered via the downsized Coastal Branch and ICDS to the Santa Maria Subarea.
- o The San Antonio Subarea receives no water in this alternative because it is not economically feasible.
- o The Santa Ynez and South Coast Subareas receive SWP entitlement water developed by local projects.
- o The Santa Ynez (upper) Subarea receives conjunctive use water using the existing Cachuma Reservoir, which is shared with the South Coast Subarea.

- o The Santa Ynez (lower) Subarea relies on Salsipuedes Reservoir and desalination of sea water.
- o The South Coast Subarea also relies on desalination of sea water and water reuse (Goleta and Santa Barbara).

### Alternative 8

SWP water to the Cuyama, Santa Maria, San Antonio, and lower Santa Ynez Subareas; rest local projects (including 27-foot Cachuma Reservoir with conjunctive use).

- o The Cuyama Subarea relies on delivery of SWP water via the SWP Cuyama Branch.
- o SWP water is delivered via the downsized Coastal Branch and ICDS to meet all entitlement requirements in the Santa Maria and San Antonio Subareas and partially in the Santa Ynez (lower) Subarea.
- o The Santa Ynez (upper and lower) Subarea shares water from Cachuma Reservoir enlargement (27 feet) and conjunctive use with the South Coast Subarea.
- o The South Coast Subarea, in addition, relies on desalination of sea water and water reuse (Goleta and Santa Barbara).

#### Alternative 9

SWP water to the Cuyama, Santa Maria, San Antonio, and lower Santa Ynez Subareas; other subareas rely on local projects (including 42-foot Cachuma Reservoir with conjunctive use).

- o SWP water is delivered to the Cuyama, Santa Maria, and San Antonio Subareas as was done in Alternative 8.
- o The Santa Ynez and South Coast Subareas are also operated as was done in Alternative 8, except that Cachuma Reservoir enlargement is greater (42 feet), which reduces the requirement for desalination of sea water.

#### Alternative 10

SWP water to the Cuyama, Santa Maria, San Antonio, and lower Santa Ynez Subareas; other subareas rely on local projects (including New Gibraltar Reservoir with conjunctive use).

- o In this alternative, the Cuyama, Santa Maria, and San Antonio Subareas are supplied as in Alternative 8, i.e., SWP water is delivered.
- o The Santa Ynez (upper and lower) and South Coast Subareas rely on New Gibraltar Reservoir with conjunctive use; in addition, lower Santa Ynez Subarea relies on SWP water and the South Coast Subarea relies on water reuse (Santa Barbara only) and desalination of sea water.

#### Alternative 11

SWP water to the Cuyama, Santa Maria, San Antonio, and lower Santa Ynez Subareas; rest local projects (including 27-foot Cachuma Reservoir with conjunctive use).

- o In this alternative, the Cuyama, Santa Maria, and San Antonio Subareas are operated as in Alternative 8.
- o The entitlement for the Santa Ynez (upper) Subarea is fully met from Cachuma Reservoir enlargement (27 feet) plus conjunctive use, and lower Santa Ynez Subarea's entitlement is met entirely with SWP water.
- o The South Coast Subarea relies on the delivery of Cachuma Reservoir enlargement (27 feet) plus conjunctive use water and water reuse (Goleta and partially Santa Barbara).

### Alternative 12

SWP water to the Cuyama, Santa Maria, San Antonio, and lower Santa Ynez Subareas; rest local projects (including 33-foot Cachuma Reservoir with conjunctive use).

- o Same as Alternative 11, except Cachuma Reservoir is enlarged by 33 feet and conjunctive use operation was undertaken to deliver water which is shared by the upper Santa Ynez and South Coast Subareas.
- o Enlargement of the reservoir by 33 feet plus conjunctive use eliminates the requirement for development of water reuse projects in the South Coast Subarea.

#### Alternative 13

SWP water to the Cuyama, Santa Maria, San Antonio, and lower Santa Ynez Subareas; rest local projects (including 42-foot Cachuma Reservoir with conjunctive use).

- o In this alternative, the Cuyama, Santa Maria, and San Antonio Subareas are supplied as in Alternative 8.
- o Cachuma enlargement (42 feet) plus conjunctive use supplies water to the upper and lower Santa Ynez and South Coast Subareas.
- o In addition, the lower Santa Ynez Subarea



#### Alternative 14

SWP water to the Cuyama, Santa Maria, San Antonio, and lower Santa Ynez Subareas; rest local projects (including New Gibraltar with conjunctive use).

- o In this alternative, the Cuyama, Santa Maria, San Antonio, and lower Santa Ynez Subareas rely on the SWP water.
- o New Gibraltar Reservoir plus conjunctive use serves the full entitlement of the upper Santa Ynez and partial entitlement of the South Coast Subarea.
- o The South Coast Subarea receives its remaining entitlement from the Santa Barbara regional water reuse and desalination of sea water local projects.

#### Alternative 15

#### All SWP water.



o All entitlement water is served from the



TWO OF THE DAMS AND RESERVOIRS serving Santa Barbara County are Gibraltar, on the left, and Bradbury Dam, which forms Lake Cachuma, on the right. Among the options being considered are construction of New Gibraltar Dam downstream from the present dam and enlargement of Bradbury Dam and Lake Cachuma.

SWP via the Coastal Branch, the ICDS, and the Cuyama Branch.

o No local projects are involved in this alternative.

#### Alternative 16

SWP water to Cuyama, Santa Maria and San Antonio Subareas and Vandenberg Air Force Base in the lower Santa Ynez Subarea; other water purveyors in the lower and upper Santa Ynez and South Coast Subareas rely on local projects

T

(including 42-foot Cachuma Reservoir with conjunctive use plus desalination of sea water in the South Coast Subarea).

- o SWP water is delivered to the Cuyama, Santa Maria and San Antonio Subareas and VAFB as was done in Alternative 8.
- o The Santa Ynez Subarea (excluding VAFB) shares water from Cachuma Reservoir enlargement (42 feet) and conjunctive use with the South Coast Subarea.
- o The South Coast Subarea, in addition, relies on desalination of sea water.

Copy of document found at www.NoNewWipTax.com

# CHAPTER VII. ALTERNATIVES FOR FURTHER CONSIDERATION

Selection of alternatives for further consideration required an economic and Thus financial analysis. the various combinations of water supply options that went into formulating each alternative could be compared. In addition, other factors that were considered included availability of water within each subarea, regional water quality requirements, proposed ICDS alignments, and environmental and engineering aspects.

This chapter presents the results of the analysis and identifies the least cost alternatives. The actual costs and methods of financing and repayment will be the subject of further discussions among the SWP water supply contractors, SBCFCWCD, its local contracting agencies, and DWR, as specific projects or options are proposed.

### Cost Analysis

It should be noted that all facilities of the SWP are basically designed either to store water (known as "project conservation facilities") or to convey water to the water supply contractors ("project transportation The conservation facilities"). facilities benefit all contractors: therefore. the contractors pay for the costs in proportion to their annual entitlements. The transportation facilities are for the benefit of specific contractors and the costs are paid accordingly. The Delta Water Charge is established to return to the State all appropriate reimbursable costs of the SWP conservation facilities, and the Transportation Charge is levied to recover constructing, operating, costs of and maintaining the SWP transportation facilities.

In developing the estimated costs for each water supply option, some basic assumptions were made. These included:

- o All present SWP costs, shared by all SWP contractors including SBCFCWCD, are financed at a melded interest rate of 4.736 percent. DWR assumes that future SWP water supply facilities will be funded through proceeds from sale of revenue bonds at a 9.5 percent interest rate and that such facilities will be repaid at that rate separate from repayment of existing facilities. As used in this report. combining repayment of existing and future facilities would have the same effect as financing SBCFCWCD's share of existing SWP facilities and proposed local projects at an interest rate of 5.5 percent.
- o The local interest rate will be 11.0 percent, which reflects the actual and estimated near future overall annual cost of local revenue bond financing.
- o SWP power cost will be 3 cents per kilowatthour and local power cost will be 8.5 cents per kilowatthour through 1990. Any local project which becomes a unit of the SWP will be eligible for SWP energy to the extent the local project yield becomes SWP project yield and arrangements can be made with local utilities to deliver SWP energy.
- o The charge for SWP facilities used in arriving at the cost of SWP water delivered to the various subareas was based on the data shown in **Table 40**.
- Although the trend in improvements in sea water desalting technology tend to reduce the cost of sea water desalting, the effects of inflation and increased costs of energy have had a net effect of increasing the costs. Energy cost does impact desalination costs more than the other alternatives. These factors will influence the future cost of desalting; therefore, the costs shown in this report

reflect the best estimate of future costs.

The information in Table 40 does not reflect costs associated with completing the water supply features of the SWP. Present SWP dependable supplies (firm yield) amount to about 2.5 million acre-feet, while water supply contracts provide for ultimate delivery of about 4.2 million acre-feet. Facilities adequate to satisfy long-term contractual commitments are assumed to be built over the next several decades. As these facilities are built, costs will be shared by all SWP water contractors in proportion to their contractual amounts of water.

While costs to develop future SWP supplies are not known, Table 43 shows future SWP charges assuming that needed future supplies are developed at annual costs of either \$200 per acre-foot or \$400 per acre-foot. The importance of Table 43 is that it reflects the concept of increasing cost of SWP water supplies as new storage and diversion facilities are built and provides a range of charges based on a range of assumed future costs. Table 43 charges for \$200 per acre-foot new water range from \$64 per acre-foot to \$115 per acre-foot higher than the charges shown in **Table 40.** Similarly, **Table 43** charges for \$400 per acre-foot new water are from \$110 per acre-foot to \$214 per acre-foot higher than **Table 40** charges. Thus, future increases in SWP charges will make SWP water and the alternatives developed in this study more costly than shown.

All the estimates and assumptions given above are applicable only for this study and will be subject to further refinement and applicability at the time a water supply option or alternative is implemented. The SBCFCWCD would be responsible for repayment (as part of the water delivery charges) of the funds that would be advanced by the State and used for building local water supply options or SWP facilities, such as the Coastal Branch.

Between the time that assumptions were made and this report completed, changes have been proposed in the method of repayment for future SWP water development projects. Repayment would

TABLE 43

FUTURE SWP CHARGES ASSUMING NEW SUPPLIES ARE PROVIDED AT INDICATED ANNUAL COST ON A SCHEDULE TO MEET WATER SUPPLY REQUESTS *

	Uni	it costs
Year	\$200/AF	\$400/AF
1990	136	182
1995	161	233
2000	179	269
2010	187	286

(dollars per acre-foot)

* Also includes transportation and conservation facilities costs for existing facilities, but does not include cost of completing the Coastal Branch. In either case, local projects and completion of the Coastal Branch will be affected by the same amount. most likely be based on the interest rate incurred from the sale of future water revenue bonds. Combining repayment of existing and future facilities would have the same effect as financing SBCFCWCD's share of existing SWP facilities and proposed local projects at an interest rate of 5.5 percent.

The unit cost of water developed by the options studied was compared with the equivalent SWP unit cost for each subarea. (See Table 38 in Chapter VI and Figures 26-31.) The unit costs shown are based on SWP funding for the eligible costs and local funding for those costs that are not eligible for SWP funding. As shown in the figures, those options most desirable fall below the horizontal line and to the right of the vertical line. The least desirable options fall above the horizontal line and to the left of the vertical line.

In Chapter VI, 16 water supply alternatives were identified and a matrix was developed, then programmed and computerized to depict the various combinations of options. The computer program incorporated the unit costs and determined the least cost alternatives based on (1) partial or complete funding of the local projects by the SWP, and (2) no funding by the SWP.

Table 44 depicts the alternatives with partial or complete funding by the SWP. The matrix shows, by subarea, the selected water supply options with each alternative, their yield, unit costs, and annual costs. The matrix also shows the total yield and average unit and total annual costs for each subarea and for the County as a whole.

Alternative 12 appears to be the most economical. This alternative would deliver SWP water to the Cuyama, Santa Maria, San Antonio, and lower Santa Ynez Subareas, while the upper Santa Ynez and South Coast Subareas would depend on the enlargement of Cachuma Reservoir (33-foot) plus conjunctive use.

Alternative 13 is second best choice in terms of least cost. Alternative 13 is similar to Alternative 12 with the following two exceptions:

- Cachuma Reservoir is raised 42 feet vs 33 feet.
- Lower Santa Ynez Subarea does not receive its full entitlement from SWP. Instead, 2,477 acre-feet of its 12,000 acre-feet entitlement would come from Cachuma Reservoir via the Lompoc Pipeline, giving the water for lower Santa Ynez Subarea an estimated unit cost of \$850 per acre-foot.

The delivery of 2,477 acre-feet of Cachuma Reservoir water to the lower Santa Ynez Subarea by releasing water from Cachuma Reservoir into the Santa Ynez River and allowing it to flow downstream to Lompoc and the ground water basin was found to be impractical. This is because historic data have shown that it takes more than two weeks for water released from Cachuma Reservoir to reach the lower Santa Ynez Subarea; therefore, a substantial amount of water would be lost through evaporation and transpiration by riparian vegetation. Releasing water along the Santa Ynez River would also interfere with the river's "new release schedule." which was established by the State Water Resources Control Board in 1973 as a means of optimizing the river's water supply downstream of Cachuma.

Alternative 11 was third best choice in terms of least cost. It is also similar to Alternative 12 but with a Cachuma Reservoir enlargement of 27 feet and conjunctive use plus water reuse at Goleta and Santa Barbara.

Alternative 16 was fourth best choice in terms of least cost. It would deliver SWP water to Cuyama, Santa Maria and San Antonio Subareas and Vandenberg Air Force Base in the lower Santa Ynez Subarea. Remaining water purveyors in Santa Ynez and South Coast Subareas depend on water from an enlarged Cachuma Reservoir (42-foot) plus conjunctive use. South Coast also relies on desalination of sea water.

Alternative 14, which included New Gibraltar Reservoir plus conjunctive use, ranked sixth, full delivery of SWP water throughout the County (Alternative 15)













1.2.2

 $\overline{\mathbf{v}}$ 

#### TABLE 44 SUMMARY OF WATER SUPPLY ALTERNATIVES TO MEST SANTA BARBARA COUNTY WATER ENTITLEMENTS FROM THE STATE WATER PROJECT (Costs based on partial or complete funding of local projects by the State Water Project)

STATE FUNDING	(Costs based on parti	ial or complete funding of	E local projects by the Sta	te Water Project)	
SHRARRA (SWP Entitlement)	Alt. #1, All Local Projects	Alt. #2, All Local Projects	ALT: #3; 5W to Gu,SEV,Sa; & INV: All else Local	Alt. #4, SW to SMV, Sa, S LmV; All else Local	Alt. \$2, SV to Cuyama V. All else Local
	Amount Dait Annual , afv. Cost. Cost.	Amount Unit Annaal afy Cest Cost	Amount Unit Annual afy Cost Cost	Amount Unit Annual afy Cost Cost	Amount Unit Annual sfy Cost Cont
rate: supply option range: states and an arrange. cireas (1 600)		******		************	
	1000 arts	1640 1617 2776600		1500 2617 2715200	
Santa Barbara Canyon Reservoir State Project Water	0 0 0	0 0 0 0	1690 1119 1790400	0 0 0	1600 1119 1790400
Totals	1500 2517 3775590	1500 2517 3775500	1660 1119 1790500	1500 2517 3775500	1500 fil9 1790400
SANTA MARIA (16,850)					
Round Corral Reservoir	6700 902 6043400	6700 902 6043400	0 0 0	0 0 0	0 0 0
Desalimation of Seawater State Project Water	10150 1185 12027750 0 0 0	10150 1185 12027750 0 0 0	0 0 0 0 16850 462 7784700	0 0 0 16850 462 7784700	16850 1143 19259550 0 0 0 0
Totale	16850 1072 19071150		16850 A62 - 7785700	16850 462 7784700	16850
		*******			
SAN ANION10 (25)					
State Project Water	0 0	0 0 0 0 0	23 630 14490	23 630 14490	0 0 0 D
SANTA YNEZ, LOWER (12,000)	Enlarged Cechings (27fr)	Enlarged Cachuma (42it)			
Gibraltar + Lompoc Pipeline		0 0 0 0	0 0 0	0 0 0	0 0 0
Salsipuedes Reservoir	2850 922 2627700	2850 922 2627700	0 0 0	0 0 0	0 0 0 0 0 0
Demalination of Segwater State Project Water	6558 1040 6820320 0 0 0	6433 1040 6690320 0 D 0	0 0 0 12000 725 8700000	0 0 0 0 12000 725 8709000	12000 1054 12648000 0 0 0 0
	10059156	12000 1022 1225055	1200 T25 Glenooo	12000 725 PT02000	10000
			12000 423 6400000		12000 1034 12048000 
SANTA YNEZ, UPPER (2,578)	Enlarged Cachima (27ft)	Enlarged Cachuma (42ft)	New Gibraltar Reservoir	New Gibralter Reservoir	Eularged Carbonia (27ft)
New Gibraltar Reservoir Reisting Cachuma Cool Use	0 0 0 Π 0 0		2578 859 2240282 9 9 9 0	2578 869 2240282 0 0 0 0	0 0 0 0 0 0
Eularged Cachuma Reservoit	2578 - 264 - 580592	2578 361 930658	0 0 0		2578 264 680592
State Project Water	U U U.	· · · · · ·			
Totals	2576 264 680592	2578 361 930658	2578 859 2240282	2578 869 2240282	2578 264 680592
SOUTH COAST (12,435)	Enlarged Cachuma (27ft)	Enlarged Cachuma (42ft)	Rew Gibraltar Reservoir	New Gibraltar Reservoir	Rolarged Cachuma (27ft)
New Gibraltar Reservoir	0 0 0	0 0 0	5757 869 5002833	5757 869 5002833	0 0 0
Eristing Cachuma, Conj. Use Enlarged Cachuma Reservoir	2600 264 686400	5295 361 1911495	0 0 0	<b>0</b> 0 0	5192 264 I370688
Golets Water Rease	845 1737 1467765	845 1737 1467765	845 1737 1467765 1052 1151 1210852	0 0 0 0 0 0	0 0 0 0 0 0
Desalination of Seawater	7938 1109 8803242	5243 1119 5866917	4781 1125 5378625	6678 1116 7452648	7243 1111 8046973
State Project Water	0.0.0.0	0 0 0 		· · · ·	
Totals	12435 979 12168259	12435 841 10457029	12435 1050 13060075	12435 1002 12455481	12435. 757 9417661
COUNTY WIDE (45,486)	Jeans Start	45242 1003 45500300	134 1154004 T	45386 771 36070453	45551 965 41705767
	43383 1031 4673500 	+2003 1003 400301		***************************************	

TABLE	44	(cont	.)
-------	----	-------	----

-

STATE FINDING

-

---

SUMMARY OF WATER SUPPLY ALTERNATIVES TO MEET SANTA BARBARA COUNTY WATER ENTITLEMENTS FROM THE STATE WATER EROJECT (Costs based on partial or complete funding of local projects by the State Water Project)

: \$ 43 <b>7 5 3 3</b> 3 5 5 5 <b>5 5 3 5 5 5 5 5 5 5 5 5 5 5 5 </b>					, 20 0 0 0 20 30 30 4		-						*****		
	Alt. #6,	SW ED	Cuyana V.	Alt. 4	7, 3N t	to SMV .	Alt. #8,	SW to	Cu.SNY,Sa,	Alt. #9,	SW to	Cu,SHV,Sa, an Ionel	Alt. #10,	SW to	Cu,SMV,Sa
SUMAMEA (SWP Entitlement)	hat hat	etse L Troit	Acqual	Annunt	Deir D		Agonat	I finit	Armeal	Annunt	Thit	Amual	Amount	<u>ALI EI</u>	Je LOCAL
Water supply option	ıfy	Cost	Cost	afy	Cost	Cast	afy	Cost	Cost	afy	Cost	Cost	afy	Cost	Cost
СПУАНА (1,500)															
Santa Barbera Canyon Reservoir State Project Water	0 1600	0 1119	0 1790400	1500 0	2517 0	3775500 0	0 1500	0 1119	0. 1790400	0 1600	0 1119	0 1790400	- 0 1600	0 1119	0 1 <b>79</b> 9400
Totals	1600	1119	1790400	1500	2517	3775500	1600	1119	1790400	1600	1119	17 <u>9</u> 0400	1600	1119	1790400
SANTA MARIA (16,850)									-		******		↓#IIII		
Round Corral Reservoir Desalination of Seawater State Project Water	0 16850 0	0 1143 0	0 19259550 0	0 0 16 <b>850</b>	0 0 535	0 0 9014750	0 0 16850	0 0 483	0 0 8138550	0 D 16 <b>850</b>	0 9 496	0 0 8357600	0 9 16850	0 0 483	6 ( 8136550
Totals	16850	1143	19259550	16850	535	9014750	16850	483	8138550	16850	49.6	8357600	15850	483	8138550
SAN ANTONIO (23)				*****			****				******	·■ = =≠=============	·↑ = = = = = = = = = = = = = = = = = = =	a at i stra	
State Project Water	0.	C	0	D	0	0	23	709	16307	23	774	17802	23	709	16307
SANTA YNEZ, LOWER (12,000)		-					Cichuma	(27ft)	Coqj. Dae	Cachuma	(42ft)	Conj. Dee	aer Gibr	alter,	Conj. Die
Gibralter + Lospoc Pipeline Cachum + Lospoc Pipeline Salsipuedes Reservoir Desalimation of Semwater State Project Water	0 0 0 12000	0 9 1054 0	0 0 12648000 0	0 0 2850 9150 0	0 0 922 1063 0	0 0 2627700 9726450 0	0 4000 9 0 8000	0 624 0 794	0 2496000 0 6 6352000	0 6167 0 0 5813	0 573 0 0 866	0 3533691 0 0 5051378	4900 0 0 8060	925 0 0 0 784	3700000 ( ( 6352000
	 12000		12646000	12000	 1030	12354150	12000	737		12000			12000	 878	10052000
SANTA YNEZ, OPPER (2,378)	Eularge	d Cachi	uma (42ft)	Exist. 0	achuma	Conj. Due	Cachum	(27.ft)	Conj. Dae	Cachum	••**** (42ít)	Gouj. Dae	New Gibr	alter,	Conj. Usa
Wew Gibraltar Reservoir Existing Cachuma, Conj. Use Enlarged Cachuma Reservoir State Project Water	0 0 2578 0	0 0 361 0	0 0 930658 0	0 2578 0 0	0 76 0 0	0 195928 0 0	0 0 2578 0	0 0 126 0	0 0 324828 0	0 0 2578 0	D 171 0	0 0 440838 0	2578 0 0	427 D 0 0	-1100806 ( (
Totals	2578	361	930658	2578	76	- 1959.28	2578	126	324828	2578	171	440838	2578	427	1100800
SOUTH COAST (12,435)	Enlarge	d Cach	umia (42ft)	Exist. (	echum	Coaj. Use	Cachom	(27ft)	Conj. Dje	Cachum	(42ft)	Conj. Use	New Gibr	alter,	Conj. Use
New Gibralter Reservoir Existing Cachuma, Conj. Use Enlarged Cachuma Reservoir Golets Water Reuse SB Regional Water Reuse Desalination of Seswater State Project Water	0 0 8012 0 0 4423 0	0 361 0 1123 0	0 2892332 0 4967D29 0	0 922 0 845 1052 9616 0	0 76 0 1737 1151 1105 0	0 70072 D 1467765 1210852 10625680 0	0 6942 845 1052 3596 0	0 126 1737 1151 1137 0	0 874692 1467765 1210852 4088652 0	0 8745 845 1052 1793 0	0 0 171 1737 1151 1140 0	0 0 1495395 1467765 1210852 2044020 0	6542 0 0 1052 4841 0	427 0 0 1151 1125 0	2793434 ( 121085: 544612
Totals	12435	532	7859361	12435	1076	1.3374 369	12435	615	7641961	12435	500 	6218032	12435	760 ••••••	9450411
COINTY WIDE (45,486) Totals	45463	935	42487969 Copy	45363	853 ent four	38714697	45486	568 DJakeco	26760046	45486	559	25409741	45486	672	30548474

124

#### TABLE 🐱 (cont.)

SUMMARY OF WATER SUPPLY ALTERNATIVES TO MEET SANTA BARBARA COUNTY WATER SETITLEMENTS FROM THE STATE WATER PROJECT -(Comts based on partial or complete funding of local projects by the State Water Project)

STATE FUNDING	(Ca	mts bee	ed on part	iel or =0	mplete	funding of	local p	<b>Soject</b> ₽	by the Stu	te Water	Project	t)						
SUBAREA (SWP Entitlement)	AIt.411, 6 1217; 6	SW to C 11 else	u,SNV,Sa, Local	Alt.#12, & LMV; /	SW to C	u,SM7,Sa, Locel	Alt,#13, & 1247;	SW to All els	Cu,SHV,Se, e Local	Alt. #14, <u>4 DNV;</u>	SW to All elu	Cu,SMV,S&, e Local	Alt. Pertici	f15, SW pating	to All urveyors	Alt.#16, <u>6 VA78;</u>	5W to <u>All el</u> ;	Cu,SMV,SA, <u>e Local</u>
Water supply option	Anount äfy	- Cont	Annual Coat	Amount afy	Unit Cost	Annual Cost	Amount afy	Unit Coet	Amuel Cest	Amount afy	Unit Cost	Annuel Cost	Amount afy	Coat	Amiual Cost	Amount ATY	Cait	Annual cost
CUTAMA (1,600)																*******		
Santa Barbera Canyou Reservoir State Project Water	0 1600	0 1119	0 1790400	0 1600	0 1119	0 1790400	0 1500	6 1119	0 1790400	0 1600	0 1119	0 1790400	0 1600	D 1119	0 1790400	0 1600	0 1119	0 179 <b>04</b> 00
Tota]#	1500	1119	1790400	1600	1129	1790400	1600	1119	1798408	1600	1119	1790400	1600	1119	1790400	1600	1119	1796400
SANTA NARIA (16,850)																		▝▝▝▛▀▝▖▖▖
Round Corral Reservoir Deselination of Seawater State Project Water	0 0 16850	0 0 462	0 0 7784700	0 0 16850	0 0 462	0 0 7784700	0 0 16 <b>830</b>	0 0 475	0 D 8083750	0 0 16850	0 0 462	0 0 7784700	0 0 16850	0 0 430	0 D 7245500	0 0 16850	0 0 485	0 0 8172250
Totels	16850	462	7784700	16850	462	7784700	16850	475	8003750	16850	462	7784700	16850	<b>43</b> D	7245500	16850	485	8172250
SAN ANTONLO (23)									-						<b></b>		4 <b>234</b> 53 ₁ 01	64 <del>870 20</del> 978 8
State Project Water	23	. 630	14490	23	630	14490	23	674	15502	23	630	14490	73	55 8	- 13754	23	700	16100
SANTA THE2, LONER (12,000)		ور هار ا در د ماروند					Cachem	(42ft)	Conj. Dae		-					Cachuma	(42ft)	Conj, Dae
Gibraltar + Lompon Pipelina Cathuma + Lompon Pipelina Salsipuades Reservoir Devaligation of Seswater State Project Water	0 0 0 12000	0 0 0 725	0 0 0 0 8700000	0 0 0 12000	0 D D 725	0 - 0 0 8700900	0 2477 0 9523	0 850 0 765	0 2105450 0 7294618	D D D 12000	0 0 0 725	0 0 0 8700000	0 0 0 12000	0 0 0 693	0 0 0 0 15000	0 4500 0 7500	0 559 0 715	0 2963500 0 5362500
Totale	12000	725	8700000	12000	725	8700000	12000	783	9400068	12000	725	8700000	I2000	693	8316000	12000	694	\$328000
SANTA THEZ, UPPER (2,378)	Cachman	(27ft)	Conj. Use	Cachuma	(33ft)	Conj. Dae	Cechum	(42ft)	Conj. T#e	New Gibr	alter,	Coqj. Ume				Gachman	(42fL)	Conj. Dse
New Gibraitar Reservoir Existing Cachuma, Conj. Dee Enlarged Cachuma Reservoir State Project Water	0 0 2578 0	0 0 126 0	0 324828 0	0 0 2578 0	0 0 140 0	0 0 360920 0	0 0 2578 0	0 0 171 0	0 0 440838 9	2578 0 0 0	427 0 0 9	1100806 0 0 0	0 0 0 2578	0 0 0 830	0 0 2139740	0 0 2578 0	0 0 171 0	0 0 440838 0
Total #	2578	126	324828	2578	140	360920	1578	171	440638	2578	427	1100806	2578	810 	2139740	2578	171	440838
SOUTH COAST (12,435)	Carbuna	(27ft)	Conj. Dae	Cactum	(33ft)	Comj. Use	Cach unn	(42ft)	Conj. Dee	New Gibr	alter,	Conj. Vee				Cechuma	(42ft) (	Cooj. Ure
New Sibraltar Reservoir Existing Cachuma, Conj. Ume Enlarged Cachuma Reservoir Goleta Water Reuse SB Regional Water Reume Besalingtion of Seswater State Project Water Totals	0 10942 845 648 0 0 12435	0 126 1737 1177 0 0 250	0 1378692 1467765 762696 0 	0 12435 0 0 0 0 22435	0 L40 0 0 0 L40	0 0 1740980 0 9 0 0 1740900	12435 0 0 12435	0 171 0 0 0 171	0 2126385 0 0 0 0 0 2126385	10542 0 0 1052 841 0 12435	427 0 0 1151 1211 0  541	4501434 0 0 1210852 1018451 0 6730737	0 0 0 0 12415 12435	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 10942800 109542800	0 0 10412 0 2023 0 12435	0 0 171 0 0 1135 0 	0 0 1780452 0 2296105 0 4076537
COUNTY WIDE (45,486). Totals	45486	459	<u>1</u> 2223571	45486	448	20391410	45486	479	21776943	45486	574	26121133	45486	669	30448194	43486	502	22824145

ranked eighth, and the all-local projects alternative (Alternative 1) was ranked sixteenth in terms of cost.

Alternative 15 was the least cost alternative for Santa Maria, San Antonio, and lower Santa Ynez Subareas. Alternative 15, as well as Alternatives 3, 5, 6, 8–14, and 16 were also the least cost alternatives for Cuyama Subarea. Alternative 7 was the least cost alternative for the upper Santa Ynez Subarea, and Alternative 12 had the least cost for the South Coast.

Table 45 depicts the same combinations of options within each alternative, but on the basis that local funding only will be used for local projects and SWP funding for the Coastal and Cuyama Branches only. Based on this funding, Alternative 12 still appears to be the most economical alternative, followed by Alternatives 11 and either 13 or 15, then 16.

Comparison of local and State financing of local projects indicates that overall savings of \$160 to \$600 per acre-foot of water could be achieved among the alternatives. Such savings are based on a State contribution to local project financing of \$400 per acre-foot (annual cost equivalent) 88 the assumed cost of new SWP vield-producing facilities, in addition to avoided costs associated with reducing the size of the Coastal Branch. (See discussion later in this Chapter.) As indicated in Table 43, however, estimates of annual costs for new SWP supplies are presently in the range of \$200 to \$400 per acre-foot. Consequently, the financing and cost advantage associated with SWP participation at a \$200 per acre-foot annual cost level would be less. SWP financial participation is addressed in the last two sections of this chapter.

Thus far in this report, it has been assumed that SLOCFCWCD would participate in the construction of Phase II of the SWP Coastal Branch and would receive its full 25,000acre-foot entitlement to SWP water. However, SLOCFCWCD has the same option as SBCFCWCD not to participate or to participate on a reduced basis in the construction and use of the Coastal Branch. Should SLOCFCWCD elect not to participate or to participate to a lesser extent, SBCFCWCD's cost would rise on the Coastal Branch because of a reduction in the economy of scale. To determine this impact, additional computer runs were made assuming SLOCFCWCD would opt to (1) receive one-half of its entitlement (12,500 acre-feet) and (2) not receive any SWP water. Table 46 illustrates this impact,

#### Financial Considerations

In 1979, DWR released the first set of guidelines for funding local water supply projects for inclusion in the SWP. In late 1982, amendments to State Water Contracts were executed which permitted SWP funding of certain costs of local projects, based upon the avoided costs of developing a similar amount of water in Northern California. The guidelines were revised in 1982 and from time to time additional revisions have been considered. All versions of the guidelines have included a stipulation that the local project must not adversely affect either the costs or water deliveries to contractors other than the sponsoring contractor.

The "Revised Guidelines on Funding Local Water Supply Projects for Inclusion in the State Water Project" serve as a guide to local agencies, SWP water supply contractors, and DWR regarding funding local water supply projects as units of the SWP.

The conditions that must be met before a local project in Santa Barbara County can be considered for partial or complete funding by the SWP are as follows:

- 1. SBCFCWCD, as prime contractor with the State for SWP water, the other SWP water contractors, and DWR are involved.
- 2. The local project provides a water supply to help meet the SWP entitlement deliveries of SBCFCWCD.
- 3. The water supply developed by the local project is new, dependable, and of

126

#### TABLE 45

SUMMARY OF WATER SUPPLY ALTERNATIVES TO MEET SANTA BARBARA COUNTY WATER ENTITLEMENTS FROM THE STATE WATER PROJECT

(Coats based on complete funding of local projects by Local Bond Issues)

LOCAL FUNDING	(Costs based	on complete funding of lo	cal projects by Local Bong	[ [saues]	t <b></b>
SUBAREA (SWP Entitlement)	Alt. #1, All Local Projects	Alt. #2, All Local Projects	ALT. #3; SW to Cu.SMV;Sa; 6 LMV; All else Local	Alt. #4, SW to SMV, Sa, 3 LmV; All else Local	Alt. #5, SW to Cuyama V. All the Local
Water snool option	Amount Duit Amoul afy Cost Cost	Amount Unit Amual afy Cost Cost	Amount Unit Annual sty Cost Cost	Amount Unit Annual afy Cost Cost	Amount Unit Annual afy Cost Cost
CDYAMA (1,600)		<u>≈q≈qaarada##b‡</u> ≈d⊯ara <u>area</u>		_{──} ──────────────────────────────────	
Santa Berbara Canyon Reservoir State Project Water	1500 3083 4624300 0 0 0	1500 3083 4624500 0 0 0	D 0 0 1600 [119 1790460	1500 3083 4624500 0 0 0 0	0-000 1600-1113-1790600
Totala	1500 3083 4624500	1500 3083 4624500	1600 1119 1790400	1500 3083 4624500	1600 1119 1750400
SANTA MARIA (16,850)		·\$₽₽₽₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩		▖▆▆⋐⋑⋑⋑⋨⋠⋬⋐⋭⋬⋎⋭⋎⋻ <u>⋺⋺⋺∊</u> ∊∊⋺⋺	
Round Corral Reservoir Desalination of Semater State Project Matar	6700 1467 9826909 10150 1806 18330900	6700 1467 9828900 10150 1806 18330900	0 0 0 0 0 0 0 14850 662 7786700	0 0 0 0 0 0 0	0 0 0 16850 1764 29723400
Totals	16850 1671 28159800	15850 1671 28159800	16850 462 7784700	16850 462 7784700	15859 1764 29723400
SAN ANTONIO (23)		∊╣╶┰┲┲⋑⋿⋝⋝⋢ <del>⋎</del> ⋚⋚⋚⋚⋝⋿ <del>⋝⋝⋶⋳∊⋹</del> ⋺⋝⋽		▖▁▖▆▝▋▝▖▋ <mark>▝▝▖▖</mark> ▆ [▓] ▌▓▋ <mark>▌</mark> ▆▖▋▆ [▖] ▆  ▓▖▖▖▌▆	
State Project Water	0 0 0	0 0 0	23 630 14490	23 630 14490	0 0 0
SANTA THEZ, LOWER (12,000)	Bularged Cachuma (27ft)	Enlarged Cachuma (42ft)			
Gibraltar + Lompoc Pipeline Cachuma + Lompoc Pipeline Salsipuedea Reservoir Desalination of Seawater	0 0 0 0 2592 1363 4051296 2850 1487 4237950 6556 1662 10899396	0 0 0 2717 1651 4485767 2850 1487 4237950 6433 1662 10691546	0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 12060 1575 2008500
	12000 1599 19188642		12000 725 870000	12000 725 8700000	0 0 0 0 0
SANTA YNEZ, UPPER (2,578)	Enlarged Gachuma (27.ft)	Enlarged Cachuma (42it)	New Gibraltar Reservoir	New Gibraltar Reservoit	Sularged Cachuma (27ft.)
New Gibraltar Reservoir Existing Cachuma, Conj. Use Enlarged Cachuma Reservoir State Project Water	0 0 0 0 0 0 0 0 2578 820 2113960 0 0 0	0 0 0 0 0 0 2578 927 2389806 0 0 0	2578 1434 3696852 0 0 0 0 0 0 0 0 0 0 0 0	2578 1434 3696852 0 0 0 0 0 9 0 0 0	0 0 0 0 0 0 0 2578 820 2113950 0 0 0 0
Totals	2578 820 2113960	2578 927 2389806	2578 1434 3696852	2378 1434 3696852	2578 820 2113960
SOUTH COAST (12,435)	Enlarged Cachuma (27ft)	Enlarged Cachuma (42ft)	New Gibraltar Reservoir	Nev Gibreltar Reservoir	Enlarged Cachuma (27ft)
New Gibraltar Reservoir Stisting Cachuma, Conj. Use Eslarged Cachuma Reservoir Goleta Water Reuse SB Regional Water Reuse Desalination of Seawater State Project Water	0 0 0 0 2600 820 2132000 845 2373 2005185 1052 1759 1850468 7938 1730 13332740 6 0 0	0         0         0         0           5295         927         4908465         845         2373         2005185           1052         1759         1850468         5243         1740         9122820         0         0         0	5757         1434         8255538           0         0         0           0         0         0           0         0         0           845         2373         2005185           1052         1759         1850468           4781         1746         8347626           0         0         0	5757         1434         8255538           0         0         0         0           0         0         0         0           0         0         0         0           0         0         0         0           0         0         0         0           6678         1737         11599686           0         0         0	0 0 0 0 0 0 5192 820 4257440 0 0 0 7243 L732 12544876 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Totals	12435 1586 19720393	12435 1438 17886938	12435 1645 20458817	12435 1597 19855224	12435 1351 16802316
COUNTY WIDE (45,486) Totals	45363 1627 23607295	45363 1598 72476407	45486 933 42445259	45386 984 44675766	45463 1551 70518076

Copy of document found at www.NoNewWipTax.com
TABLE 45 (cont.) SUMMARY OF WATER SUPPLY ALTERNATIVES TO MEET SAWTA BARBARA COUNTY WATER ENTITLEMENTS FROM THE STATE WATER PROJECT (Costs based on complete funding of local projects by Local Bond Issues)

LOCAL FUNDING

		، 	CONCI DINEO	. ou comp	tere te	series of t	ocar proj	ecto u	y LOCAL DOG	u lasues,		وحدافت الكروبي وعدف			
SUBAREA (SWP Zotillement)	Alt. 46	, SW to else i	Cuyana V. ocal	Alt.	≢7, SW else L	to SMV ocal	A1t. #8, 6 LMV;	59 to All el	Cu,SMV,Sa, se Local	Alt. #9, & LMV;	SW to All el	Cu,SHV,SL, se Local	Alt #10, 4 LHV,	SW to All el	Co,SNV,Sa, Lan Local
WateI supply Option	Anoent Afy	Unit Cost	Annual Cost	Amount afy	Unit Cost	Amual Cost	Anount siy	Omit Cost	Armuel Cost	Asount afy	Cost	Annual Cost	Amount afy	Unit Cost	Aonstai Cost
CUYAMA (1,600) .															
Santa Barbara Canyon Reservoir State Project Water	0 1600	0 1119	0 1790400	1500 0	30-83 0	4624500 0	0 1600	0 1119	0 1790400	0 1600	0 1119	D 1790400	0 1600	0 1119	0 1790400
Totala	1600	1119	1790400	1500	3083	4624500	1600	1119	1790400	1600	1119	1790400	1600	1119	1790400
SANTA MARIA (16,850)															
Round Corral Reservoir Devaligation of Seawater State Project Water	0 16850 0	0 1764 0	0 29723400 D	0 0 16850	0 0 535	0 0 •9014750	0 0 16850	0 0 483	0 6 8138550	0 0 16850	0 0 496	0 0 8357600	0 0 16850	0 0 483	0 0 8138550
Totals	16850	1764	29723400	16850	535	9014750	16850	483	81 38550	16850	496	8357600	16850	483	8138550
SAN ANTONIO (23)				┿ <del>┲╼╱</del> ╪┛┰╖┲ ╵	1884 <u>7</u> 47	₩₩₩ <u>₩</u> ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩					<u>≖≠+1≾</u> ×ı	ĸ <b>₽₽₩₽₽₽₽₽</b> ₽₽₽₽₽₽₽₽		****	
State Project Water	0	0 an <del>an tatala</del> n a	Ö İdaman azərba al-	0	) ••***	) • • • • • • • • • • • • • • • • • • •	23-	709 	16307	23	774 *****	17802	23	709	16307
SANTA YNEZ, LOWER (12,000)				Ì			Cac b cont	(27EL)	Conj. Use	Cachume	(42ft)	Conj. Use	New Gibr	altar,	Cooj. Tre
Gibraltar + Lompoc Pipeline Gachuma + Lompoc Pipeline Salsipuedes Reservoir	0 0 0	0 0 0	0 0 0	0 0 2850	0 0 1487 1487	0 0 4237950	0 4000 0	0 1089 0	0 4356000 0	6167 0	0 1068 0	0 6586356 0	400-0 0 0	1494 0 0	5976000 0 0
State Project Water	0	10/4 0	20088000 D	0	1984 	0	8000	794	6352000	5833	0 666 	0 5051378	9000	0 794	0 6352000
Totals	12000	1674	20088000	12000	1637	19646350	12000	892	10708000	12000	970	11637734	12000	1027	12328000
SANTA YNEZ, UPPER (2,578)	<b>Eularg</b> e	d Cach	umn (42£t.)	Exist. (	Gachuma	Comj. D≉e	Cachuma	(27ft)	Ccoj Dse	Gachuma	(42īt)	Conj. Dse	Sew Gibr	alter,	Conj. Use
New Gibraltar Reservoir Existing Cachuma, Conj. Use Enlarged Cachuma Reservoir State Project Water	0 _0 2578 _0	0 0 527 0	0- 0 2389806 0	0 2578 0 0	0 310 0 0	0 799180 0 0	0 0 2578 9	0 ( 591 (	0 0 1523598 0	0 0 2578 0	0 0 666 0	0 0 1716948 0	2578 0 0 0	996 D 0	2567588 0 0 0
Totals	2578	927	2389806	2578	310	799180	2578	59]	1523598	2578	665	1716948	25 78	996	2557688
SOUTH CDAST (12,435)	Bolargi	ad Cach	ume (42ft)	Erist,	Cachuma	Comj. Use	Cachuna	(27ft)	Conj Use	Cechoza	(42ft)	Conj. Vse	New Gibr	anting: altar;	Coaj, Use
New Gibraltar Reservoir Existing Cachuma, Conj. Use Enlarged Cachuma Reservoir Golete Water Reuse SB Regional Water Reuse Deaslination of Seswater State Project Water Totale	0 0 8012 0 4423 0 12435	0 927 0 1747 1219	0 7427124 0 7726981 0 15154105	0 922 0 845 1052 9616 0 	0 310 0 2373 1759 1727 0 	0 285820 0 2005185 1850468 16506832 0  20748305	-0 6942 845 1052 3596 0	0 591 2373 1759 1759 1759 1759	0 4102722 2005185 1850468 1 6321768 0 1 14280143	0 8745 845 1052 1793 0 	0 5566 2373 1759 1761 0 1032	0 5824170 2005185 1850468 3157473 0 12837296	6542 0 0 1052 4841 0 12435	996 0 0 1759 1745 0 1352	6515832 0 1859468 8447545 0 16813845
COUNTY WIDE (45,486) Totals	45463	1521	69145711	45363	1209	54833285	45486	80)	36455998	45486	799	36357780	45486	916	41654790

Copy of document found at www.NoNewWipTax.com

128

-

#### IABLE 45 (cont.)

# SOMMARY OF WAISE SUPPLY ALTERNATIVES TO MEET SANTA SABARA COUNTY WAISE ENTITLEMENTS FROM THE STATE WATER PHOJECT (Costs based on complete funding of local projects by Local Bood Issues)

LOCAL FURDING			(Costs bas	ed on com	plete f	unding of 1	local pro	jecta	by Local B	od Issue	•)						_	
SUBAREA (SWP Entitlement)	Alt.#11, 8.1247;	SW to All els	Cu,SMV,Sa, e Local	Alt.#12, 6 1207;	SW to AIl els	Cu,SMV,Sa, e Local	Alt.#13, 6 1147;	SW to	Cu, SHV, Sa, E Local	Alt.\$14, & LMV;	SW to ( All elu	Cu,SHV,Sa, De Local	Alt Partici	ILS, SM Mating	to All Purveyor	Alt.#15, 6 VATB:	SW to All el	Cu.SNV.SA.
Water supply option	and inc.	Cost	Cost	and the	Cast	Cost	ETY Languit	Cost	Cost	af7	Cout	Cost	aliy	Cost	CONT	A20080	cost	cost
CUTAMA (1,600)																		
Sante Barbara Canyon Reservoir State Project Mater	1600	0	0 1790400	0- 1600	0 9111	0 179 <b>0</b> 400	0 1600	-0- 1119	0 179050-0	0 1600	0	0 1790500	0 1600	0	0	0	0	0
	1600	1119	1790400	1600	1119	1796400	1500		1790400	1600		1790500			1790400			1790490
SANTA MARIA (16,850)	*****	*****		و وجداد تا کار د	and kirks					 						********	3234241	1/90400
Round Correl Reservoir Desalingtion of Segwater State Project Water	0. 0 16830	0 0 462	0 0 7784700	D D 16850	0 462	0 0 7784700	0 0 16850	0 0 475	0 0 3003750	0 0 16850	0 0 462	0 0 7784700	0 0 16850	0 0 430	0 0 7245500	0 0 16850	0 9 485	0 0 8177250
Totals	16850	462	7784700	16830	462	7784700	16850	475	8003750	16850	462	7784700	16850	430	7245500	16850	485	8172250
SAM AFTONIO (23)				,		CO OG 44 43 333					******	*****				· ₹■±q∎ <u>₽</u> ± >	****	********
State Project Water	23	630	14490	23	630	14490	23	674	15502	23	630	14490	23	59 B	13754	23	700	16100
SANTA YREZ, LONER (12,000)			iin na 482 a in	·♣∎ ^{₩₩₩} ₩₩₩₩₩		▝▝▝▝▋▋▋▋▋⋑⋨⋠₿	Cachume	(42ft)	Coüj.Vee	·◆₩₩₩₩₩₩₩₩₩₩₩ ·	n stitt f				1 <b>4 4 5 6 6 6 6 6 6</b> 6 6 6 6 6 6 6 6 6 6 6 6	Cachuma	(42ft)	Conj. Dse
Gibraltar + Lompoc Pipeline Cecham + Lompoc Pipeline Salsipaedem Reservoir Develiaation of Seawater State Project Water	0 0 0 12000	0 0 0 725	0 0 8700000	0 0 0 12000	0 0 0 725	0 0 9 8700000	0 2477 0 0 9523	0 1345 0 0 766	0 3331565 0 7294618	0 0 0 12000	0 0 0 725	0 9 0 .8700000	9 9 9 12000	D D 0 0 693	0 0 0 8315000	0 4500 0 7500	0 1154 0 715	0 5193090 0 5362500
Totale	12000	725	8700000	12000	725	8700000	12000	886	10626183	12000	725	870000D	12000	693	8316000	12000	880 ****	10555500
SANTA YNEZ, UPPER (2,578)	Cachum	(27ft)	Conj. Vee	Cachung	(33ft)	Couj. Ume	Gaebum	(42ft)	Conj, Use	New Gibr	altar,	Conj. Use		• •		Cachung	(42ft)	Couj. Dae
New Gibraltar Reservoir Existing Cachuma, Conj. Une Eularged Cachuma Resetvoir State Project Water	0 0 2578 0	0 0 591 0	0 D 1523598 0	0 2578 0 	0 0 618 0 	0 0 1593204 0	0 2578 0	0 0 565 0	0- 0- 1716948 0- 1716948	2578 0 0 0	996 0 0 	2567588 0 0 0	0 0 2578 7579	0 0 0 830 	0 0 21 39 740 21 39 740	0 2578 0 	0 0 656 0 	0 L716948 D: 
			2223399 2012210 00 000	Cuchume		Transforment	Contrast		Coni. Des	New Cib		±terrenere Coni. Πια				Cachoma	======================================	сасі. Пир
South Const (12,33) Sew Gibraltar Reservoir. Existing Cachuma, Cooj. Uam Eolarged Cachuma Reservoir Goleta Water Reuse SB Regional Water Reuse Desatination of Seawater State Project Water	00 00 10942 843 648 00	0 591 2373 1785 0	0 6466722 2005185 1156680 0 0	0 0 12435 0 0 0 0		0         7684830           0         7684830           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0	0 12435 0 0 0 0 0	0 0 656 0 0 0 0 0 0 556	0 8281710 0 0 0 8281710	10542 0 0 1052 841 0 12435	996 0 0 1759 1833 0 	10499832 0 0 1850468 1541553 0 13891853	0 0 0 12435 12435	0 0 0 0 0 0 0 0 0 0 0	0 0 0 10942800	0 0 10412 0 2023 0 12435	0 6666 0 0 1760 0 844	
COUNTY WIDE (45,486)			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	a-					188994	╻ <mark>┝</mark> ╺╸╸╸╸ │	44 # <del>#23</del> 6:s			******	ingini 1920 ilini ni akan n	*******	*****	
Totals	45486	647 	29441775	45486	. 606 	5 17567624	45486	669 	30434493	45486	764 ******	34749131	45486		30448194 	45486	/20	JZ/46070

### TABLE 46 EFFECT ON SANTA BARBARA COUNTY OF REDUCTIONS IN DELIVERIES OF SWP WATER TO SAN LUIS OBISPO COUNTY

· · · · · · · · · · · · · · · · · · ·	Unit cost increase*								
Water supply alternative	San Luis	Obispo takes	San Luis Obispo						
	one-nall	veilverles	cakes no deliveries						
3	\$	25	\$ 68						
4	\$	25	\$ 68						
7	\$	47	\$ 134						
8	\$	30	\$ 83						
9	· \$	33	\$ 92						
10	\$	30	\$ 83						
11	\$	25	\$ 68						
12	\$	25	\$ 68						
13	\$	29	\$77						
14	\$	25	\$ _. 68						
15	\$	3	\$ 22						
16	\$	32	\$ 85						
*Shown as increases in unit	costs for S	WP water							

In dollars per acre-foot

adequate quantity and quality to serve the intended beneficial uses that would otherwise be met from imported SWP supplies.

- 4. The local project is feasible on an engineering and financial basis and is economically and environmentally sound.
- 5. Local water rights are protected.

Funding would be based on the capital component of the melded costs associated with (1) the construction of future SWP conservation facilities and (2) those avoided

costs of SWP transportation facilities not yet constructed and not needed. It is assumed that facilities. future SWP including local projects, would be financed by the sale of revenue bonds with an interest percent rate of 9.5 and a repayment period of 30 years, as described under "Cost Analysis" in this Chapter. In addition, a third source, local participation, would be required if the costs to construct the local project exceed the costs to construct the SWP facilities. It is assumed that local bonds would be sold with an 11 percent interest rate for 30 years. These three funding sources are explained below.

## 1. Funds Associated with Future SWP Conservation Facilities

The amount of SWP funding for a local project will be determined by multiplying the firm yield of the local project by a melded capital cost value (dollars per annual acre-foot). This value is derived from the ratio between the total first cost of a d ditional Northern California conservation facilities and the total annual yield of the additional facilities, as determined by DWR.

## 2. Funds Associated with SWP Transportation Facilities Not Yet Constructed

The size and, consequently, the construction costs of future SWP transportation facilities not yet constructed may be reduced when a portion of the future SWP water deliveries can be provided by a proposed local project. The avoided costs of such unconstructed future SWP transportation facilities would be determined as being the difference in the construction cost of the future SWP transportation facilities needed to supply the remaining maximum entitlement deliveries with and without the local project.

## 3. Local Share of Construction Costs

Local agencies would assume all costs, if any, to construct, operate, and maintain the local project not covered by SWP funds made available.

If the local agency or SWP water supply contractor decides to retain a portion of the yield of a local project, the SWP can finance as a maximum amount only the total capital costs multiplied by the ratio that the portion of the firm yield assigned to the SWP is to the total local project yield.

Figure 32 depicts local project financing as envisioned by DWR.

Repayment to DWR of SWP funds for construction, operation, maintenance, energy, and replacement of proposed local projects and the Coastal Branch will be governed by the SWP water supply contracts, which would allow for repayment through the Delta Water Charge or an equivalent charge and equivalent Transportation Charge.

A proposed repayment methodology as envisioned by DWR under the local projects guidelines is depicted in **Figure 32**.

In addition, it should be noted that SWP energy may be available for use by the local project. If available, SWP energy may be used by a local project where only a part of the firm yield of the local project becomes yield to SWP, but only to the extent of the ratio that the yield to the SWP is to the total local project yield. The cost to the local project will be the melded SWP power rate as determined by DWR.

## Future Decision-making Process

From all the analyses conducted and considered in this and in previous studies, it appears that at least six water supply alternatives should be given serious consideration by the SBCFCWCD and water purveyors within the County. The six alternatives are Alternatives 11 through 16.

The selection of these alternatives was strongly influenced by the need for water quality improvement and protection in the Cuyama, Santa Maria, and lower Santa Ynez Subareas. The existing and potential water quality problems can be avoided or improved by the importation and blending of SWP water. The Lompoc Pipeline would also serve to improve the water quality in the lower Santa Ynez Subarea by delivering better quality water from upstream on the Santa Ynez River directly to the lower area.

Economics and financial assistance were other key considerations. In this regard, the initial capital cost was considered less critical then the energy requirements. This



ļ

is because annual requirements for energy in energy-intensive projects will continue and the costs of energy undoubtedly will rise indefinitely, whereas capital costs (assuming no major wear or degradation of equipment) can be repaid once and for all.

The selection process also took into account water reuse potentials, environmental considerations, and engineering feasibility.

The selection of these alternatives does not negate or minimize the importance and need for continued water conservation, watershed management, and weather modification programs. Continued emphasis should be placed on urban and agricultural water conservation programs, which include public information and education, water management, better irrigation techniques and scheduling, regulations addressing water waste and water-use planning, and water emergency plans. Watershed management programs should be pursued to increase the vield of watersheds within the County and to reduce the risk and size of wild fires and losses. The weather modification program is a desirable means of developing additional water in the County. However, additional safe yield from watershed management and weather modification would require additional storage and that has limited the development of these methods.

Before any of the alternatives or their components can be implemented, additional information regarding the engineering feasibility, possible funding, economic, legal and institutional considerations, and environmental impacts will need to be addressed. SBCFCWCD, therefore, will have to inform DWR as to the preferred alternative, keeping in mind that even with any of the above alternatives, the County will not meet its entire projected future water demands and would have a deficit of 12,500 acre-feet by year 2010. The intent of this study was to provide the decision makers the opportunity to select an alternative that would supply a quantity of water equal to its entitlement of SWP water, or 45,486 acre-feet per year. Once SBCFCWCD requests DWR to proceed with an alternative that incorporates State funding, discussions will need to commence with the other SWP contractors and DWR.

The level of SWP participation in local water supply projects, as well as the degree of participation by all SWP water supply contractors in all future water supply facilities, will need to be determined. A number of the SWP contractors, including SBCFCWCD, have been actively discussing these issues for some time. While the concept of local project addendums to the SWP has been widely discussed among the contractors and contract amendments and guidelines formally adopted, it is not clear that the concept has full acceptance. To date, there has been no local project implemented. The funding level assumed for the draft report may now be higher than what would be acceptable to many of the SWP water contractors. Successful implementation of a local project addition to the SWP will require general agreement among the project contractors.

After all parties reach agreement, the feasibility and Environmental Impact Report (EIR) studies could begin. A funding commitment to proceed with specific facilities cannot be made before a complete feasibility study has been reviewed by DWR and the SWP water contractors.

Whatever the decision may be, any new water development for the County could not be fully implemented for another five to ten y e a r s. E v en if SBCFCWCD and SLOCFCWCD decide in 1985 on a Coastal Branch or a downsized Coastal Branch plus local projects, 1993 would be the earliest that water would be delivered to the County, assuming the work and time schedule shown in Figure 33 is followed.

		 	Year	
Facility	Activity	1985	1990	19
	State			
	Feasibility and EIR Study			
Coastal Branch	Preliminary Design			
	Final Design			
	Construction			
	Local	¦		
	Feasibility and EIR Study			
Intra-County	Preliminary Deisgn			
System (ICDS)	Final Design			
	Construction			
	State and/or Local			
	Feasibility and EIR Study			
Teres 1 Decisions	Preliminary Design			
Local Project	Final Design			
	Construction			

1

Appendix A REFERENCES

:

1

#### APPENDIX A

#### REFERENCES

- Bechtel Group, Inc. "Desalination Technology Report on the State of the Art." February 1983.
- Bookman-Edmonston Engineering, Inc. "Reconnaissance Level Report: Operations of Facilities for Importation of State Project." April 1978.
- ----. "Program for Importation of State Project Water to Santa Barbara County." May 1970.
- Brown and Caldwell. "Water Supply and Distribution, a report prepared for City of Santa Barbara, California." January 1969.
- California Department of Water Resources. "Preliminary Summary Report on Investigation of Alternative Aqueduct Systems to Southern California." February 1959.
- ----- "Water Supply Contract Between the State of California Department of Water Resources and Santa Barbara County Flood Control and Water Conservation District." February 1963.
- ----. "Feasibility of Serving the Santa Barbara County Flood Control and Water Conservation District from the State Water Projet." Bulletin 119-21. September 1963.
- ----. "San Luis Obispo and Santa Barbara Counties Land and Water Use Survey, 1959." Bulletin 103. June 1964.
- ----. "Ground Water Quality and Hydrology Data San Antonio Creek Basin." Memorandum Report. December 1971.
- ----. "California's Ground Water." Bulletin 118, September 1975.
- ----. "Reclamation of Water from Wastes in Southern California." Bulletin 80-5. November 1975.
- ----. "Water Conservation in California", Bulletin No. 198. May 1976.
- ----. "Effects of Conservation on Southern District Urban Water Demand for 1980, 1990, and 2000." District Report. December 1977.
- ----. "Consumer Costs of Water Quality in Domestic Water Use, Lompoc Area." Southern District Report. June 1978.
- ----. "Southern District Urban Per Capita Water Use Study, 1971-1977." Southern District Report. November 1978.
- ----. "Central Coastal Land Use Study, 1977." District Report. January 1979.
- ----. "Ground Water Basins in California." Bulletin 118-80. January 1980.

- ----. "Water Action Plan for the San Luis Obispo-Santa Barbara Counties Area." District Report. May 1981.
- ----. "Inventory of Waste Water Reclamation in Southern California 1974-1979." Southern District Memorandum Report. June 1981.
- ----. "The California Water Plan Projected Use and Available Water Supplies to 2010." Bulletin 160-83. December 1983.
- ----. "Recommended Water Management Plan for Santa Barbara County Flood Control and Water Conservation District." Final draft. December 1983.
- ----. "Water Conservation in California." Bulletin No. 198-84. July 1984.
- ----. "Management of The California State Water Project." Bulletin No. 132-84. September 1984.
- ----. "State Water Project Report of Operations for Month of June 1984."
- ----. "Water Quality Conditions in the Sacramento San Joaquin Delta During 1983." Central District. August 1984.
- California State Water Resources Control Board. "Water Quality Control Plan Report, Central Coastal Basin." April 1975.
- CH2M Hill. "Facilities Plan for Santa Barbara Regional Water Reclamation Study." December 1980.
- Earth Sciences Associates and PRC Toups. "Supplemental Water Study for Vandenberg AFB, California." March 1982.
- Engineering Science, Inc. "Feasibility Study for Importation of State Project Water into the South Coast of Santa Barbara County." October 1976.
- Jones and Stokes Associates, Inc., and Leeds, Hill, and Jewett. "Environmental and Water Resources Reconnaissance Study for State Water Project and Alternatives." January 1979.
- Santa Barbara County Cities Area Planning Council "FORECAST 82." February 1983
- Santa Barbara County Flood Control and Water Conservation District and Santa Barbara County Water Agency. "Conceptual Report on the Enlargement of Bradbury Dam and Cachuma Reservoir or the Construction of a Dam at the Hot Spring Site on the Santa Ynez River." May 1981.
- Santa Barbara County Water Agency. "Reconnaissance Level Report Costs of State Water Project in Santa Barbara County." December 1976.
- ----. "The Economic Demand for Irrigation Water in Santa Barbara County." March 1977.
- ----. "Summary Report: Present and Future Water Needs of Santa Barbara County." November 29, 1977.

- ----. "Adequacy of the Santa Maria Groundwater Basin." November 1977.
- ----. "(Report on) Adequacy of the Ground Water Basins of Santa Barbara County." December 15, 1977.
- ----. "Summary Report Adequacy of Economics of Water Resources Development Alternatives." March 13, 1978.
- Toups Corporation. "Water Resources Management Study South Coast -- Santa Barbara County." July 1974.
- United States Bureau of Reclamation. "Draft of 10 Alternative Plans to Augment Water Supplies to Santa Barbara and Ventura Counties and Portions of San Luis Obispo and Los Angeles Counties." October 1972.
- ----. "Lompoc Project, California A Report on the Feasibility of Water Supply Development." April 1968.
- ----. "SEED Report on Bradbury Dam Cachuma Project, California Mid-Pacific Region." July 1984
- ----. "Cachuma Project, California 23rd Progress Report on Investigations, Measurements, and Studies During Water Year 1981." August 1984.
- United States Geological Survey. "Geology and Ground Water of San Antonio Creek Valley, Santa Barbara County, California." WSP 1664. 1964.
- ----. "Ground Water Resources in the Lompoc Area, Santa Barbara County, California." OFR 76-183. Miller, G. A., 1976.
- ----. "Evaluation of Ground Water Quality in the Santa Maria Valley, California." WRI 76-128. Hughes, J. L., 1976.
- ----. "Appraisal of Ground Water Resources in the San Antonio Creek Valley. Santa Barbara County, California." OFR 80-750. Hutchinson, C. B., 1980.
- ----. "Ground Water Resources in the San Antonio Creek Valley, Santa Barbara County, California." OFR 80-750. August 1980.
- ----- "Potential Effects of Increased Ground Water Pumpage on Barka Slough, San Antonio Creek Valley, Santa Barbara County, California." WRI 80-95. Mallory, M. J., 1980.
- ----. "Ground Water Monitoring at Santa Barbara California: Phase 2 Effect of Pumping on Water Levels and on Water Quality in the Santa Barbara Ground-Water Basin." Water-Supply Paper 2197 1984.
- University of California Davis, Water Resources Center. "Shrublands in California: Literature Review and Research Needed for Management." Report No. 60, ISSN 0575-4968. July 1984.

## Appendix B

## 1979-1982 CALENDAR YEAR AVERAGE WATER USE CONDITION BY AREAS

ì

APPENDIX B									
1979-1982	CALENDAR	YEAR	AVERAGE	MATER	USE.	CONDITION	BY	AREAS	
		In 40	te-leet	per ye	аг				

City or District	City	and distr	ict	Private :	napage.				Sour	ces of 1	wete	1369333 [		╤╤╤╴╴╸╖╾╸╷ │	Wat	<del>-</del> 33333 61 18	e total	8	Area	Gal./
Ares	Total	To urban	To ag	To urban	To eg	Cachun Tecolo	a/ te	Gibrelte Missio	ur/ m	Jameso Deulto	on/ Di	Grou Wet	ad er	Total	To u	rbaa	Ťc	a B	popula- tion	capita/ đay
New Cuyama CSD	296	296										296	1007	296	296	1001	•••••••	0.1	625	423
Misc. Cuyama Vly.					28520							28604	1007	28604	84	20	28520	1001	575	130
CUYAKA VALLEY	296	296		84	28520							28900	1007	28900	380	13	28520	99 %	1200	283
City of SentaMaria	8458	8458										8458	1002	8458	8458	1002	0	02	39685	190
Orcutt (So.Cal.Wtr)	5337	5337										5337	1001	5337	5337	100%	D	01	22700	210
City of Guadalupe	710	710										710	1001	710	710	100%	D	07	3700	171
Lake Marie Water	236	235										236	1002	236	236	1002	0	02	515	409
Roral SM Vailey				1.39	90 C 0 D							139	1001	139	139	1002	D.	0I	800	155
SA Valley Industr.				/120								96/20	100.1	96720	7120	72	89600	93Z		94
SANTA MARIA VALLEY	14741	]4741		7259	89.600		FU U X U:		<b>1-1-1</b> -1-1-1			111600	1003	111600	22000	20 %	89600	80 Z	67400	291
Casmelis CSD	22	22										22	100%	22	22	1007	0	DZ	226	87
Los Alamos CSD	214	214										214	100%	214	214	100%	0	0Σ	734	260
Misc. SA Valley				80	16180							16269	1001	16260	80	01	16180	100 \$	440	162
SAN ANTONIO VALLEY	236	236		. 80	16189							16496	1002	16496	316	27	16180	982	1400	201
Mission Hills CSD	498	498										498	1007	498	498	1002		n n n n n n n n n n n n n n n n n n n	22222222 2755	161
Vandenberg Village	1836	1836										1836	1002	1836	1836	1002	ŏ	01	5839	281
City of Lompoc	3659	3659										3659	1003	3659	3659	100%	ò	07	26270	124
Vandenberg AFB	4696	4696										4696	1007	4696	4696	100%	0	DZ	8136	515
Misc. Lower SY Vly				165	30000							30165	100%	30165	165	12	30000	99 X	900	164
LOWER SANTA THEZ	10689	10689		165	30000							40854	100 <b>1</b>	40854	10854	272	30000	732	43900	221
Santa ine z NWCD , ID#1	6096	1196	4900	450	600	3580	50 X					3566	50 <b>X</b>	7146	1646	232	550D	77 2	77]2	 191
Solving MID	1386	1386				190	14.5(	purchase	d fre	πa ID#f1)	)	1196	86X	1386	1386	1007	0	DZ	2899	427
Buellton CSD	741	741										741	1001	741	741	100%	0	0X	2242	295
Misc. SY Valley				155	24800							24955	100 X	24935	155	17	24800	99 X	84.7	163
UPPER SANTA YNEZ	8223	3323	4900	605	25400							30458	89 X	34228	3928	112	30300	B9 X	13700	256
Caraistanis CD	5077	200 <b>0 126</b> 2126	2901	233000000202 25	1500		681	محدد وخرادات نا		<b></b>		2117	32 E	6537 6537	**************************************	122	ሳሌስ1	577	######################################	***************************************
Summerland CMD	107	117	80	45	1.700	197	1002						ΟZ	197	117	59 Z	80	412	12410	24 J   RA
Nontacito VD	3967	3467	500	375	100	1434	32 %			24.36	55 X	572	132	6467	384.2	RAZ	600	14.2	99.64	364
Santa Barbara City	14085	14085		100	50	4970	35 X	7324	512			1941	141	14235	14185	1002	50	07	76705	165
Le Cumbre Mut WC	1535	1382	153			301	20%					1234	208	1535	1382	907	153	101	4000	105
Galets VD	15266	11530	3736	190	480	12430	78 Z					3501	22X	15936	11720	74%	4216	26.1	64503	152
Outside Districts				225	9090							9225	100%	9225	225	27	9000	96 X	1273	158
SOUTH COAST	<b>40</b> 077	32707	7370	915	<b>11130</b>	23773	461	7324	142	2436	52	18584	36X	52122	33622	65 X	18500	351	171100	175
		김 날 날 날 고 부분 의 분 두	******	*****	وي فراد الدان خدم :			3 <del>3 3 3 4 6 7 3</del>		199333333333 1993				, 20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	*****	* 7:4:4:2 7			포 및 및 웹 프 프 프	
BARBARA COUNTY	74262	61992	12270	9108	200830	37303	137	(total s	uriac	e+tunne	D	246892	87 2	284 200	71100	25 X	213100	757	298700	2I 2
NOTE: All figures provided by cities, special districts, or small private water companies are metered water production values. As shown, some district produc- tion is delivered to agriculture (sg). The ramaining private urban (M&I) type of use is estimated from information provided by local water managers. Private agricultural purpage is estimated from earlier ag land use surveys updated by measured and estimated changes in irrigated land acreages. The actual 1979-1982 average gped for Vandenberg AFB is calcolated at 205. Its working population is about 14500; and about 201 of the AFB water production to be average.																				

### CREDITS

ł

The cover design was prepared by Audi Hill of Graphic Services, Department of Water Resources, Sacramento.

All photographs are from Santa Barbara County Flood Control and Water Conservation District except those of the pumping plants on page 52, which are Department of Water Resources photographs. Las Perillas is DWR 6226-23 and Badger Hill is DWR 6226-29.

· · · · · · · · · · · · · · · · · · ·				o Convert In Metric
Quantity	To Convert from Metric Unit	To Customary Unit	Multiply Metric Unit By	Unit Multiply Customery Unit By
Length	millimetres (mm)	inches (in)	0.03937	25.4
0	centimetres (cm) for snow depth	inches (in)	0.3937	2.54
	metres (m)	feet (ft)	3.2808	0.3048
	kilometres (km)	miles (mí)	0.62139	1.6093
Area	square millimetres (mm²)	square inches (in²)	0.00155	645.16
	square metres (m²)	square feet (ft²)	10.764	0.092903
	hectares (ha)	acres (ac)	2.4710	0.40469
	squere kilometres (km²)	square miles (mi²)	0.3861	2,590
Volume	litres (L)	gallons (gal)	0.26417	3.7854
	megalitres	million gallons (10º gal)	0.26417	3.7854
	cubic matres (m²)	cubic feet (ft³)	35.315	0.028317
	cubic metres (m³)	cubic yards (yd²)	1.308	0.76455
	cubic dekametres (dam3)	acre-feet (ac-ft)	0.8107	1.2335
Flow	cubic metres per second (m³/s)	cubic feet per second (ft®/s)	35.315	0.028317
	litres per minute (L/min)	gallons per minute (gal/min)	0.26417	3.7854
	litres per day (L/day)	gallons per day (gai/day)	0.26417	3.7854
	megalitres per day (ML/day)	million gellons ner day (mod)	0.26417	3.7854
	cubic dekometres per day (dam²/day)	acre-feet per day (ac- ft/day)	0.8107	1.2335
Mass	kilograms (kg)	pounds (Ib)	2.2046	0.45369
	megagrams (Mg)	tons (short, 2,000 lb)	1.1023	0.90718
Velocity	metres per second (m/s)	feet per second (ft/s)	3.2808	0.3048
Power	kilowatts (kW)	horsepower (hp)	1.3405	0.746
Pressure	kilopascals (kPa)	pounds per square inch	0.14505	6.8948
	kilopascałs (kPa)	feet head of water	0.33466	2.989
Specific Capacity	litres per minute per metre drawdown	galions per minute per foot drawdown	0.08052	. 12.419
Concentration	mittigrams per litre (mg/L)	parts per million (ppm)	1.0 _,	1.0
Electrical Con- ductivity	microsiemens per contimetro (uS/cm)	micromhos per centimetre	1.0	1.0
Temperature	degrees Celsius (°C)	degrees Fahrenheit (°F)	(1.8 × °C)+:	12 (°F-32)/1.8

.

## CONVERSION FACTORS