

Oceano Community Services District

1655 Front Street, P. O. Box 599, Oceano, CA 93445 (805) 481-6730 FAX (805) 481-6836

February 8, 2012

Board of Supervisors County of San Luis Obispo County Government Center San Luis Obispo, California 93408

RE:

Sea Water Intrusion In Oceano

Dear Sirs,

The Oceano groundwater supply is not threatened with seawater intrusion. We are aware that there has been information provided to the public that Oceano's groundwater supply is threatened by seawater intrusion. The incident in 2009 exhibited characteristics of saltwater intrusion but it has since to be repeated and it also should be noted that the well in question was in great disrepair. This was corrected by the county maintenance crew and at no time since has it exhibited anymore characteristics of seawater intrusion.

At the time that this sentry well was tested, there were significant external contaminants. The Board at the time was directed by its contracted engineer to take a position that the event was actually a benefit because it would elevate the priority level in case of any state water contractor allocation cutbacks. This same engineer is on contract with several San Luis Obispo agencies to which this information has been exploited to their benefit.

We normally would have accepted this without comment, but the level of exploitation of this anomaly has reached critical mass and is being quoted from everything from commercial development, other agencies needs and willful suspensions of the truth.

Sincerely,

MATTHEW G. GUERRERO

President-

RICHARD SEARCY

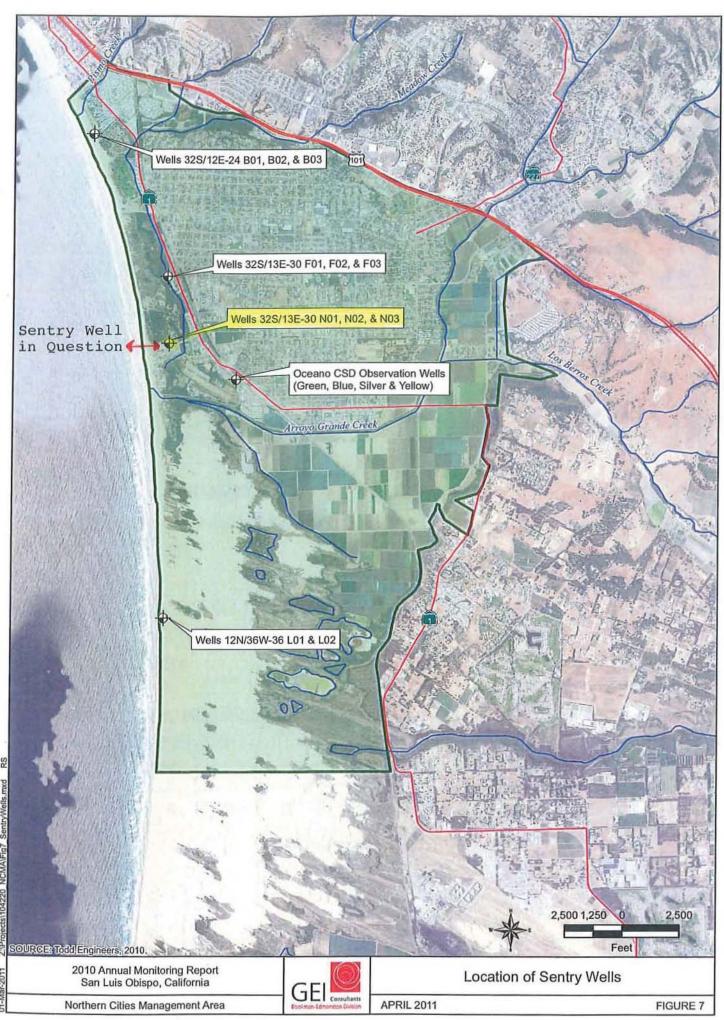
Director

LORI ANGELLO

Director

MARY LUCEY

Vice-President


FELMA HURDLE

Director

TOM GEASLEN

Interim General Manager

attachments

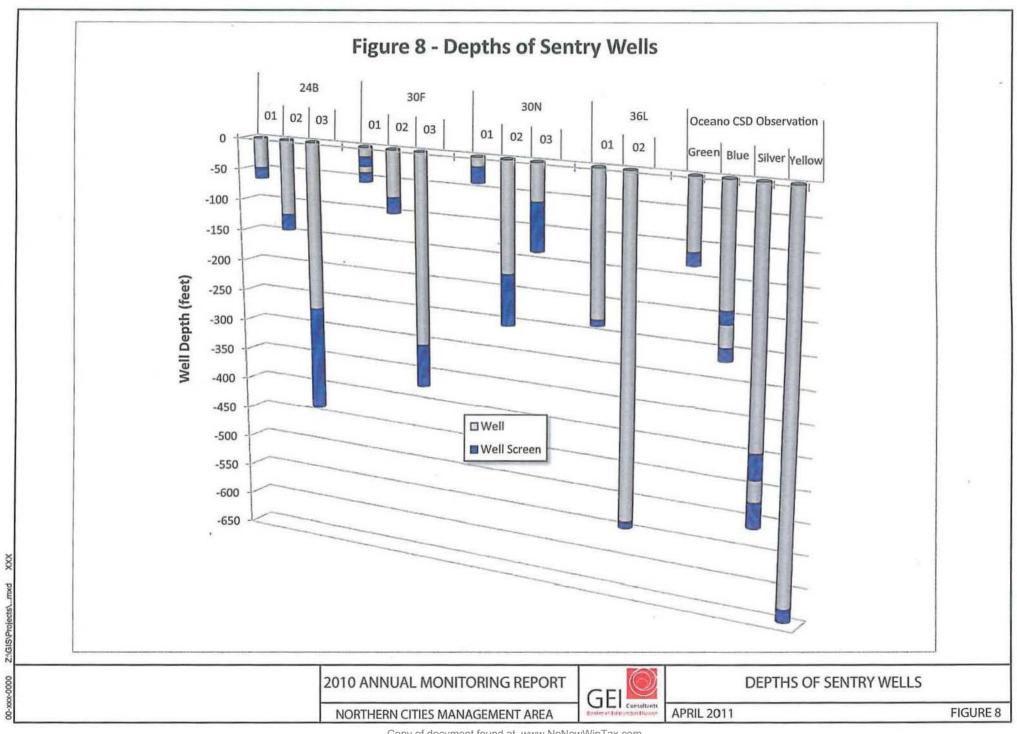


Table 6b: Northern Cities Sentry Well Water Quality Data Summary

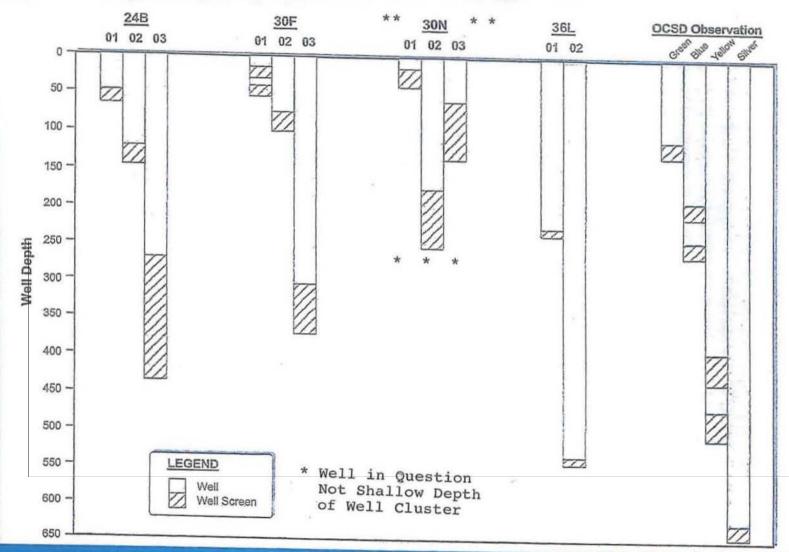
able ob.	Northern Cities Senti	y well	vvalei	Quality	Data Su	illillary	
Well	Production Interval	Date	Depth to Water (feet)	Groundwater Elevation (feet NAVD)	Total Dissolved Solids (mg/L)	Chloride (mg/L)	Sodiur (mg/L
32S/13E-30F03	Screened from 305-372	1/24/2011	12.67	10.64	650	46	36
		10/28/2010	NA	NA	650	46	37
		10/21/2010	6.62	16.69	NA	NA	NA
		7/26/2010	17.32	5.99	608	45	43.8
		4/27/2010	11.38	9.02	668	48	40.8
		1/28/2010	10.98	9.42	656	40	43.1
		10/19/2009	14.18	6.22	626	48	43.3
		8/19/2009	20.23	0.17	672	45	43.1
		5/12/2009	17.68	2.72	678	49	44.8
		3/27/1996	NA	NA	686	41	40
		6/7/1976	NA	NA	616	43	41
		1/19/1966	NA	NA	642	69	49
32S/13E-30N01	Screened from 15-40'	1/24/2011	8.18	7.35	870	180	100
OLO TOL OUTO	School and Home 10-40	10/21/2010	9.99	5.54	890	190	120
		7/27/2010	8.97	6.56	917	200	130
		4/27/2010	6.14	7.36	808	150	130
		1/26/2010	4.90	8.60	902	210	155
		10/20/2009	6.53	7.00	828	200	159
		8/20/2009	6.71	6.82	835	160	150
		5/11/2009	6.03	7.50	960	180	175
		3/11/2003	0.00	7.00	500	100	1 170
32S/13E-30N03	Screened from 60-135'	1/24/2011	6.68	8.75	570	76	48
		10/21/2010	10.76	4.67	550	69	59
		7/27/2010	9.53	5.90	528	72	55.1
		4/27/2010	6.14	7.36	672	89	60.6
		1/26/2010	5.88	7.62	606	110	75.0
		10/20/2009	6.56	6.94	806	180	93.3
		8/20/2009	7.50	6.00	1,070	190	151
		5/12/2009	6.33	7.17	602	97	63.4
		3/27/1996	NA	NA	624	70	62
		6/7/1976	NA	NA	705	90	54
		1/21/1966	NA	NA	804	57	54
32S/13E-30N02	Screened from 175-255'	1/24/2011	3.67	11.76	1,050	50	60
00011011	Salestina Helli (75 255	10/21/2010	10.42	5.01	1,040	48	52
		7/27/2010	10.02	5.41	777	57	67.6
		4/27/2010	5.26	8.27	800	93	71.9
		2/25/2010	1.72	11.78	1,000	48	71.4
Confirmation Samp	le Collected from Pump Discharge at End of Purge:	2/25/2010	1.72	11.78	1,010	74	76.9
	tion Sample Collected by Standard Method (Bailer):	1/26/2010	3.72	9.78	970	50	74.2
	(James)	10/20/2009	7.38	6.12	2,080	690	274
		8/20/2009	11.94	1.56	1,350	500	199
		5/11/2009	6.98	6.52	1,290	170	129
		3/27/1996	NA NA	NA NA	1,050	50	71
		6/7/1976	NA	NA NA	1,093	48	62
		1/21/1966	NA	NA NA	1,069	54	71
				3.973	.,,500		
12N/36W-36L01	Screened from 227-237 ^t	1/24/2011	17.61	8.68	890	41	55
		10/21/2010	20.75	5.54	910	38	76
		7/27/2010	21.18	5.11	707	36	64.2
		4/26/2010	15.94	8.06	860	42	70.3
		10/21/2009	17.72	6.28	856	38	72.0
		8/20/2009	19.16	4.84	890	39	78.0
		5/11/2009	17.68	6.32	832	63	83.8
		3/26/1996	NA	NA	882	35	66
			- 1.10				

Period of Elavated NA/CL

Table 6a: N	Northern Cities Sentry V	Vell Wa	ter Qua	ity Data S	Summary																						
Well	Construction	Top of Casing Elevation (Inst.HAVD)	Date	Depth to Water (feet)	Groundwater Elevation (feet NAVO)	Total Dissolved Solids (mg/L)	Chludde (mg/L)	Sodium (mgt.)	Potession (mg/L)	Cultiform (mg/L)	Magneston (mg/L)	Minarbonate (a EuCO3) (mg/L)	(Tight)	Hittale (mg/L)	Fetur Hipdania Navagani (mg/L)	Eman (Pen)	Floreida (Imgl.)	indide (mg/L)	Mangaress (reg%)	shimung Organ	(Mg/L)	Cartionals (as CaC(3)) (mpt)	Hydrialde (se CaCO3) (mg/L)	Specific Conductance (umbsolem)	(mg/L)	Bramida I Chiorida Ratio	Criteride / Bronide Ratio
1	Screened from 60-133* - 2 leach diameter The of renewation in 6/2016 autiliates the TDC stevation Pad elevation NAVD 66	15.53	1/24/2010	6.69	8.75 4.67	570 550	76 69	45	48	55	25	130	130	10	<1.0	0.12	02	<0,10	0.0068	1.7	130	<2.0	<2.0 <10	900	<0.1 <0.1	0.0224	45
	TOG alwalian prior to rennegation (Approximate)	13.5	7/27/2010 4/27/2010 1/26/2010 10/20/2009 5/12/2009 5/12/2009 5/12/2009 5/12/2009 5/12/2009 5/12/2009	0.53 6.14 8.68 6.56 7.59 4.33 16A 16A	8.90 7.36 7.63 8.94 8.00 7.17 16A 16A	528 672 606 606 506 1,079 607 624 705 804	72 69 110 180 190 97 70 90 57	55.1 60.8 75.0 93.3 151 63.4 62 54	3.41 3.60 4.51 25.5 81.6 3.96 4 2.8 3	65.7 70.6 77.8 92.3 112 72.9 78 09 132	31.0 32.5 34.3 41.5 44.2 32.2 35 43 59	139 134 126 162 130 122 150 188 410	130 130 130 120 130 130 120 121 161 168 250	15.0 14.0 14 5.7 18 18 105.8	< 0.10 < 0.50 1.4 2.2 3.4 FEA FEA FEA FEA FEA	0.0672	9.00 9.00	NA 0.11 0.11 < 0.10 < 0.10 < 0.10 file file HA	<0.009 <0.00500 <0.00500 0.0130 0.245 0.151 24 HA HA	1.3	129 134 126 162 130 129 14A 14A	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 iA iiA	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 ftA ftA ftA	860 870 990 1,700 1,700 900 14A 14A 14A	<0.100 < 0.100 0.653 0.344 1.93 2.24 94A 94A 94A	0.0181 0.0135 0.0118 0.0078 0.0084 0.0124 58A 68A 68A	53 74 85 128 118 81 14A 14A
325/13E-20002	Screened from 175-255' - 2-inch diameter	15.41	1/24/2011	3.67	11.76	1,010			-	- 08	-18-		1														HA
	thead senevation in 6/00/0 extind to the TDC elevation Paid elevation (AVVD 88 TDC elevation prior to renovation (Approximate)	13.53	10/21/2010 7/27/2010 4/27/2010 2/25/2010	10.42 10.02 5.26 1.72	5.01 5.41 8.27 11.78	1,040 777 800 1,000	50 48 57 93 48	60 52 67.6 71.9 71.4	6.4 9.5 7.31 12.50 4.70	100 100 141 108 141	49 45 50.5 46.3 58.1	190 181 190 190 195	490 450 470 300 490	0.24 0.16 0.3 7.0 0.16	<1.0 <1.0 3.5 3.2 <0.00	0.17 <0.1 0.138 0.123 0.15	0.17 =0.1 < 0.10 0.13 0.13	40.10 11A 0.11 0.11 < 0.10	0.054 +0.005 0.102 0.0776	<0.1 <0.5 0.20 0.7 0.16	190 181 190 159 195	<2.0 <10 <1.0 <1.0 <1.0	<10 <10 <1.0 <1.0 <1.0	1,377 1,300 1,100 1,100	0.12 <0.1 3.43 3.27 3.30	NA NA 0.0019 0.0075 0.0033	71A 204 133 300
200	Confirmation Enropin Collected from Pures District Excellenation Enropin Collected by Excel		15/35/2009 8/20/2009	1.72 5.72 7.36 11.54	11.78 9.78 6.12 1.66	1,010 970 2,000 1,330	74 50 693 500	76.9 74.2 274 (99	10-2 4.77 181 80-2	150 152 220 123	55.8 62.2 101.0 49.0	195 195 200 199	440 516 400 220	0.13 0.14 <0.10 6.4	2.4 <0.55 7.0 8.3	0.142 0.129 0.201 66A	0.16 0.16 0.22	< 0.10 < 0.10 0.81	0.0579 < 0.00500 0.208 0.309	0.24 0.16 2.0 2.8	195 195 200 199	<1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0	1,400 1,300 2,600 2,100	1.40 < 0.100 5.50 4.81	0.0032 0.0032 0.0039 0.0056	313 313 345 178
Read: Quest			5/11/2009 3/27/1996 6/7/1976 1/21/1966	6.98 NA NA NA	6.52 NA NA NA	1,000 1,000 1,003 1,009	170 10 48 54	125 71 62 71	62 6.5 4.7 5	137 145 150 148	66.9 60 60 63	176 245 248 232	470 516 484 483	1LA 0.9 0 0	HA HA	NA 0.23 0.13 0.12	0.18 HA 0.7 0.5	HA HA HA	IIA IIA IIA	0.56 HA HA	IJE ILA ILA ILA	KA HA HA	<1.0 HA HA	E,800 HA HA HA	B24 FIA FIA NA	0.0033 NA NA	NA NA NA
12/196W-36L01	Screened from 227-237 - 2-inch diameter	26,29		17.61																							
	had teransfers in 60010 Attents the TOC elevation Ped elevation HAVO BE TOC elevation prior to renovation (Approximate)	23.98	1/24/2011 10/21/2010 2/23/2010 4/25/2010 10/21/2009 8/20/2009 5/11/2009 3/01/1996	20.75 21.18 10.94 17.72 19.16 17.62 10A	8.58 5.51 5.11 8.50 6.20 4.84 6.32 NA	800 910 707 610 806 930 832 832	39	55 76 64.2 70.3 72.0 78.6 83.8 66	8.1 3.6 3.70 4.13 4.84 4.21 4.03 4.8	99 130 127 129 131 128 111 124	30 47 47,4 48,9 48,2 48,1 45,4 47	100 160 162 191 192 184 204 233	400 400 430 400 436 398 330 408	0.45 0.49 0.49 NA 2	<1.0 <1.0 < 0.50 0.37 0.58 0.58 NA HA	0.223 0.150 NA NA NA NA	<0.1 <0.10 <0.1 0.12 <0.10 0.12 HA	40.10 HA < 0.10 B.13 4 0.10 < 0.10 HA	40 003 40 003 40 00300 0 057 0 0094 0 103 0 551	40.1 40.3 6.11 0.14 0.13 0.54 0.22 NA	160 129 162 191 192 184 204 16A	<10 <10 <10 <10 <10 <10 <10 <10 <10	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 NA	1,200 1,213 1,100 1,100 1,100 1,200 1,200 1,200 1,200	<0.1 <0.1 <0.103 4.53 1.66 2.03 4.02 FGA	11A 11A 0.0031 0.0032 0.0034 0.0036 0.0035 11A	11A 11A 327 200 292 273 265 11A
121106W-36L02	Screened from 535-549	26.29	6/0/1076	NA	HA	936	39	72	3.5	130	-0	223	423	0.6	HA	0.15	0.7	HA	NA	NA	NA	HA	NA	HA	HA.	TEA	NA
	Sehrh diameter Hende diameter Ped a fevarion IAND BB Foreign IAND BB TOC elevation (Approximate) TOC elevation gellet às tenesation (Approximate)	231	1/24/3011 10/21/2010 7/27/2010 4/25/2010 10/21/2009 6/00/2009 5/11/2009 3/26/1904 E/B/1976	9.37 19.77 20.53 9.24 17.65 19.15 14.38 HA	16.92 6.52 5.76 14.78 6.25 4.65 8.42 16A 18A	600 770 737 720 638 765 775 772 800	120 120 110 100 93 100 120 127	95 130 121 118 113 121 132 150	7,6 7,6 7,61 6,89 6,15 6,65 7,24 6,7	75 69 91.1 65.4 81.6 89.8 64 68	30 44 38.9 52.4 23.0 36.8 23.7 26 44	300 275 288 218 172 290 254 300 332	190 160 190 210 200 190 180 148 184	<0.10 <0.10 HA 0.2	2.3 3.4 <0.60 0.77 3.2 3.8 60A 61A 71A	0.48 0.427 0.582 0.268 HA HA 0.5	40.1 0.10 0.3 0.33	1.31 16A 0.77 0.28 57 0.27 16A 16A	0.13 0.15 0.160 0.167 0.128 0.307 0.428 HA	0.53 0.54 0.00 0.7 0.61 0.73 0.78 10.78 10.78	300 275 268 218 172 290 284 10A	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 in tin	<2.0 <10 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 HA	1,270 1,263 1,260 1,100 540 1,266 1,566 34A	1.40 0.12 0.645 0.870 0.255 0.830 0.958 64A	0.0044 0.0049 0.0073 0.0070 0.0062 0.0078 0.0065 14A	226 222 138 143 162 133 154 16A
MW-Green	Screened from 110-130* - 3-Inch dameter	30.86															- 41	- 18									
Oteans	Cashing relative to concrete pad Pad efection above MSL, approximate All alterations retains to MSL. Screened hom 1902-167 and 245-205	14.14 35.0	1/24/2011 10/26/2010 10/21/2010 7/26/2010 4/26/2010 1/27/2016 10/70/2008 8/18/2009 5/14/1583	106.19 1(A 112.71 85.61 63.60 43.71 29.20 24.55 16.80	171.56 NA -81.65 -61.75 -23.04 -12.65 1.66 4.31 15.08	310 290 11A 434 550 460 362 420 668	90 81 11A 85 83 130 92 160 38	22 26 16A 34.2 47.7 45.0 29.6 43.4	8.1 0.3 FIA 1.93 8.7 25.4 2.92 3.37 FIA	34 64 78A 61.7 86.1 882 19.2 43.8 85	9.2 11 14A 39.4 48.3 124 45.1 20.4 65	19.0 100.0 11A 30.0 62 112 76.6 17.6 360	310 100	<0.1 NA <0.10 <0.10 0.56 <0.10 <0.10	<1.0 <1.0 1/A <0.09 0.84 1/A <0.50 1.1 1/A	71A 0.0435 <0.02 <0.0200 0.0697 HA	0.2 11A 0.58 <0.1 0.21 <0.10	4.47 HA HA 0.72 0.56 0.29 < 0.10 0.25 HA	0.4 0.85 NA 1.45 2.54 32.4 6.242 1.76 6.61	0.63 0.36 11A 0.32 0.31 0.43 0.39 0.48	12.0 163.0 10.0 10.0 50.0 65.0 112.0 63.0 17.6	<2.0 <10 HA <1.0 <1.0 <1.0 <1.0 1.0 1.0	<10 <10 11A <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	480 520 11A 690 650 760 590 890	10 28 11A 26 233 4,360 11.4 242 0.10	0.0084 0.0044 NA 0.0038 0.0037 0.0038 0.0042 0.0043 FIA	106 225 11A 208 208 208 205 236 235 235
Mil-Stud	- 3-bin/dameter Cating refelies to occusive political Pad elevation above MSL, approximate All elevations refelies to MSL. Screened Rem 303-430' and 470-510' Screened Rem 303-430' and 470-510'	30.91 -4.09 35.0	1/24/2011 10/21/1/010 7/24/2010 4/26/2010 1/27/2010 10/20/2000 8/16/1000 5/16/1003	24.87 30.11 24.74 18.52 27.06 27.50 24.65 13.30	9,76 0,60 6,17 12,33 8,85 3,41 6,26 17,61	680 770 783 1,150 1,740 2,250 302 840	110 100 130 160 430 1,000 150	60 68 80.1 70.2 55.8 19.5 93.2 50	17 12 8.58 6.48 4.58 2.40 16.7 12A	64 88 142 200 282 487 23.9	22 31 42.0 50.7 43.0 22.5 12.1 50	5.0 14.0 2.8 5.4 <1.0 5.0 3.0 250	300 450	< 0.10	<1.0 <1.0 < 0.50 0.56 < 0.50 0.02 1.3 HA	< 0.0200 < 0.02 0.0819	0,14 0,13 0,19	0.96 HA 0.31 0.54 0.41 < 0.10 0.5 HA	0.16 0.054 2.97 3.10 9.41 15.1 0.7 0.14	0.31 +0.3 0.8 1.0 2.0 4.5 0.74 NA	11.2 14.0 2.8 8.4 <1.0 5.0 23.0 20.0	6.2 <10 <1.0 <1.0 <1.0 <1.0 <1.0 30.0 30.0	<2.0 <10 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	1,040 1,163 1,290 1,600 2,300 3,100 640 1,900	10.0 2.2 502 383 170 226 153 0.10	0.0038 51A 0.0059 0.0061 0.0047 0.0045 0.0049	355 F/A 169 163 215 222 203 FèA
MW-Store	- 3-both eliameter Casing relative to concrete and	30.85 -4.15	1/24/2011	22.62	12.61	462	92	96	12	34	27	60	140	+9.05 T	41.0	0.25	0.11	0.94	0.041	636	110	20	<20	7.810	22	0.0038	263
	Pad elevation above MSL, approximate All elevations relative to MSL.	35.0	10/21/2010 7/26/2010 4/26/2010 1/27/2010 10/20/2009 8/16/2009 5/16/1983	29.11 29.24 19.04 21.05 27.62 29.34 13.50	1,74 8,81 11,81 9,8 3,33 1,51 17,25	440 478 478 452 498 564 522 630	83 83 71 71	90 110 109 83 92.2 80.8 148 40	18 5.94 7.42 10.8 8.63 71.6	2.4 8.8 52.9 29.3 22.9 33.2 95.2 90	27 20.4 34.5 39.1 49.8 6.42 50	94 122.0 72.9 13.0 49.6 50.0 330	140 54 195 230 310	<0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	<1.0 <0.50 0.58 <0.50 <0.50 ×0.00 1.7	0.2 0.255 0.134 0.323	0.1 < 0.10 < 0.10 < 0.10 < 0.10	HIA 0.41 0.65 0.20 < 0.10 0.62 HIA	0.1 0.477 0.702 0.504 0.337 2.36 0.02	0.38 0.56 0.4 0.29 0.32 0.76 ftA	124 130.0 86.0 91.0 64.0 170 330	30 8.0 14.0 33.0 14.4 140 HD	<1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	810 710 810 780 850 1,000 900	3.8 61.6 71.0 54.4 20.0 278 0.05	0.0042 0.0067 0.0048 0.0041 0.0045 0.0042 NA	237 148 208 245 222 237 11A
Mill-Yellow	Screened from \$25-\$49' - 3-inch diameter Castry relative to concrete pad	30.89	1/24/2011	22.01	12.63	430	83 1	73		6.3	31	160	100 T	+0.00 I	<1.0	0.22	0.11	0.06	0.076	0.20	160	<2.0	-20	760	0.49	0.0004	296
	Courty retries to concern pair Pad elevation above MSL, approximate All aboutions relative to MSL.	23.0	#0/21/2019 #0/21/2010 #0/6/2010 #2//2010 #0/20/2009 #/#0/2009 #/#0/2009	28.22 25.56 19.17 20.58 23.60 21.04 14.30	2.47 5.39 11.72 10.31 5.09 -0.18	410 446 418 438 440 420 770		73 100 93.0 87.6 79.6 97.1 101 70	3.9 8.81 9.89 10.2 12.8 18.9 56A	6.5 10.2 14.8 15.6 10.4 93.2	33 32.0 37.1 38.0 37.9 29.1 70	142 39.4 45.9 21.0 26.6 64.4 330	100 120 150 180	<0.10 <0.10 <0.10 <0.10 <0.10	41.8 40.59 0.63 0.66 0.56 0.95	0.14 0.142 0.132 0.132 0.168 71A	<0.10 <0.10 <0.10 <0.10 0.15 0.16	HA 0.32 0.39 0.19 < 0.10 0.31 HA	0.057 0.196 0.578 0.283 0.18 5.49 0.02	-0.3 0.42 0.44 0.38 0.42 0.60	148 58.0 58.0 51.0 42.6 84.4 330	17.8 17.8 12.9 20.0 16.0 20	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	796 700 789 810 760 760 750 1,100	0.66 32.4 56.2 23.6 19.5 642 0.24	71A 0.0051 0.0045 0.0043 0.0042 0.0038 16A	154 156 218

Oceano Community Services District

1655 Front Street, P. O. Box 599, Oceano, CA 93445 (805) 481-6730 FAX (805) 481-6836


Previous Photos

of

Sentry Well

Depth of Sentry Wells

Sentry Wells NO1, 2, and 3

Monitoring Casings

Access Port

Close Up of Contamination

Oceano Community Services District

1655 Front Street, P. O. Box 599, Oceano, CA 93445 (805) 481-6730 FAX (805) 481-6836

Current Photos

of

Sentry Well

Copy of document found at www.NoNewWipTax.com

Copy of document found at www.NoNewWipTax.com

Copy of document found at www.NoNewWipTax.com

Copy of document found at www.NoNewWipTax.com

Copy of document found at www.NoNewWipTax.com

Copy of document found at www.NoNewWipTax.com

Copy of document found at www.NoNewWipTax.com